首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A segmentation procedure of LiDAR data by applying mixed parametric and nonparametric models
  • 本地全文:下载
  • 作者:F. Crosilla ; D. Visintini ; F. Sepic
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2005
  • 卷号:XXXVI-3/W19
  • 页码:132-137
  • 出版社:Copernicus Publications
  • 摘要:The paper proposes a segmentation procedure inspired to a robust LIDaR filtering data method recently introduced by the authors. The method is based on the application of a Simultaneous AutoRegressive (SAR) model for describing a trend surface and of an iterative Forward Search (FS) algorithm to detect clusters of non-stationary data. The procedure consists in an automatic process to identify raw clusters of data relating to the geometrical configurations to be segmented with the robust iterative SAR-FS parametric model. The search of homogenous clusters of points is carried out by applying a local polynomial regression algorithm, automatically adapted to the morphological variability of the LIDaR points. The combination of the parametric and nonparametric models in a mixed analytical procedure makes it possible to optimize the efficiency of the segmentation and dramatically reduce the requirements of computational memory and time consuming. Some significant experiments make it possible to evidence the potential of the method proposed
  • 关键词:LIDaR data; segmentation process; parametric and nonparametric models
国家哲学社会科学文献中心版权所有