首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Extraction of Spatial Objects from Laser-scanning Data Using a Clustering Technique
  • 本地全文:下载
  • 作者:B. Jiang
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2004
  • 卷号:XXXV Part B3
  • 页码:219-224
  • 出版社:Copernicus Publications
  • 摘要:This paper explores a novel approach to the extraction of spatial objects from the laser-scanning data using an unsupervised clustering technique. The technique, namely self-organizing maps (SOM), creates a set of neurons following a training process based on the input point clouds with attributes of xyz coordinates and the return intensity of laser-scanning data. The set of neurons constitutes a two dimensional planar map, with which each neuron has best match points from an input point cloud with similar properties. Because of its high capacity in data clustering, outlier detection and visualization, SOM provides a powerful technique for the extraction of spatial objects from laser-scanning data. The approach is validated by a case study applied to a point cloud captured using a terrestrial laser-scanning device
  • 关键词:DEM/DTM; LIDAR; Laser-scanning; Algorithms; Classification
国家哲学社会科学文献中心版权所有