首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Knowledge-Based System for Unsupervised Classification of High Resolution Multispectral Satellite Images
  • 本地全文:下载
  • 作者:Andrea Baraldi
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:1992
  • 卷号:XXIX Part B2
  • 页码:59-66
  • 出版社:Copernicus Publications
  • 摘要:A knowledge-based, hierarchical, unsupervised classification scheme forhigh resolution multispectral satellite images is proposed. This scheme,which finds its conceptual bases in the work of Nagao and Matsuyama(1980) for structural analysis of aerial photographs, introduces a newfiltering algorithm which is able to preserve fine linear structures of theimage.The classification products are: 1) a raster image where detectedoutput classes are characterized by some specific information contentand/or by spectral separability (by cluster analysis); 2) property tablesdescribing each elementary region in terms of descriptive and geometricattributes; 3) geometry of output elementary regions converted tovector format.An example of the application of this classification scheme to aLandsat TM multispectral image is presented.Key Words: satellite image classification, knowledge-based classification,image understanding.
国家哲学社会科学文献中心版权所有