期刊名称:International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)
印刷版ISSN:2278-1323
出版年度:2015
卷号:4
期号:4
页码:1117-1121
出版社:Shri Pannalal Research Institute of Technolgy
摘要:Nowadays, measuring the similarity of documents plays an important role in text related researches and applications such as document clustering, plagiarism detection, information retrieval, machine translation and automatic essay scoring. Many researches have been proposed to solve this problem. They can be grouped into three main approaches: String-based, Corpus-based and Knowledge-based Similarities. In this paper, the similarity of two documents is gauged by using two string-based measures which are character-based and term-based algorithms. In character-based method, n-gram is utilized to find fingerprint for fingerprint and winnowing algorithms, then Dice coefficient is used to match two fingerprints found. In term-based measurement, cosine similarity algorithm is used. In this work, we would like to compare the effectiveness of algorith ms used to measure the similarity between two documents. From the obtained results, we can find that the performance of fingerprint and winnowing is better than the cosine similarity. Moreover, the winnowing algorithm is more stable than others.