期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:27
页码:7345-7352
DOI:10.1073/pnas.1510507113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We review concepts, principles, and tools that unify current approaches to causal analysis and attend to new challenges presented by big data. In particular, we address the problem of data fusion—piecing together multiple datasets collected under heterogeneous conditions (i.e., different populations, regimes, and sampling methods) to obtain valid answers to queries of interest. The availability of multiple heterogeneous datasets presents new opportunities to big data analysts, because the knowledge that can be acquired from combined data would not be possible from any individual source alone. However, the biases that emerge in heterogeneous environments require new analytical tools. Some of these biases, including confounding, sampling selection, and cross-population biases, have been addressed in isolation, largely in restricted parametric models. We here present a general, nonparametric framework for handling these biases and, ultimately, a theoretical solution to the problem of data fusion in causal inference tasks.