期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:27
页码:7626-7631
DOI:10.1073/pnas.1602639113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers—short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient “primed” adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector–crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference—that is, target destruction without acquisition of additional spacers—is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector–crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers.