首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
  • 本地全文:下载
  • 作者:Anders Eklund ; Thomas E. Nichols ; Hans Knutsson
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:28
  • 页码:7900-7905
  • DOI:10.1073/pnas.1602413113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.
  • 关键词:fMRI ; statistics ; false positives ; cluster inference ; permutation test
国家哲学社会科学文献中心版权所有