出版社:Sociedade Brasileira de Ciência e Tecnologia de Alimentos
摘要:Abstract Considering the microbial safety of consumption of raw foods (Asian food), this study aimed to explore the inactivation S. aureus in raw salmon by supercritical CO2 treatment (SC-CO2). For this purpose, experimental design methodology was employed as a tool to evaluate the effects of pressure (120-220 bar), the depressurization rate (10 to 100 bar.min–1) and the salmon:CO2 mass relation (1:0.2 to 1:1.0). It was observed that the pressure and the depressurization rate was statistically significant, i.e. the higher the system pressure and depressurization rate, the greater the microbial inactivation. The salmon: CO2 mass relation did not influence the S. aureus inactivation in raw salmon. There was a total reduction in S. aureus with 225 bar, a depressurizing rate of 100 bar.min–1, a salmon: CO2 mass relation of 1:0.6, for 2 hours at 33 °C.
其他摘要:Abstract Considering the microbial safety of consumption of raw foods (Asian food), this study aimed to explore the inactivation S. aureus in raw salmon by supercritical CO2 treatment (SC-CO2). For this purpose, experimental design methodology was employed as a tool to evaluate the effects of pressure (120-220 bar), the depressurization rate (10 to 100 bar.min–1) and the salmon:CO2 mass relation (1:0.2 to 1:1.0). It was observed that the pressure and the depressurization rate was statistically significant, i.e. the higher the system pressure and depressurization rate, the greater the microbial inactivation. The salmon: CO2 mass relation did not influence the S. aureus inactivation in raw salmon. There was a total reduction in S. aureus with 225 bar, a depressurizing rate of 100 bar.min–1, a salmon: CO2 mass relation of 1:0.6, for 2 hours at 33 °C.