首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Research on E-Commerce Platform-Based Personalized Recommendation Algorithm
  • 本地全文:下载
  • 作者:Zhijun Zhang ; Gongwen Xu ; Pengfei Zhang
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2016
  • 卷号:2016
  • DOI:10.1155/2016/5160460
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Aiming at data sparsity and timeliness in traditional E-commerce collaborative filtering recommendation algorithms, when constructing user-item rating matrix, this paper utilizes the feature that commodities in E-commerce system belong to different levels to fill in nonrated items by calculating RF/IRF of the commodity’s corresponding level. In the recommendation prediction stage, considering timeliness of the recommendation system, time weighted based recommendation prediction formula is adopted to design a personalized recommendation model by integrating level filling method and rating time. The experimental results on real dataset verify the feasibility and validity of the algorithm and it owns higher predicting accuracy compared with present recommendation algorithms.
国家哲学社会科学文献中心版权所有