摘要:Virtual machine (VM) technology is one of the energy-efficiency approaches to save energy with acceptable quality of service (QoS). In our previous studies, Artificial Bee Colony (ABC) based VM allocation policy can make a good tradeoff between performance and energy consumption. However, there are two problems in state-of-the-art ABC based approaches: () how to find global optimized solutions efficiently; () how to minimize the decision time of VM allocation. To solve these two problems, the idea of simulated annealing is adopted to get a better global optimum, and the idea of gradient descent is applied to accelerate the speed of finding solution space in . Compared with state-of-the-art ABC based policies, the experimental results show that the proposed algorithm efficiently reduces energy consumption and SLA violation.