首页    期刊浏览 2025年04月27日 星期日
登录注册

文章基本信息

  • 标题:Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
  • 本地全文:下载
  • 作者:Zahir Ahmida ; Abdelfettah Charef ; Victor M. Becerra
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2005
  • 卷号:15
  • 期号:3
  • 出版社:De Gruyter Open
  • 摘要:This paper considers the properties of a minimum variance self-tuning tracker for MIMO systems described by ARMAX models. It is assumed that the stochastic noise has a non-Gaussian distribution. Such an assumption introduces into a recursive algorithm a nonlinear transformation of the prediction error. The system under consideration is minimum phase with different dimensions for input and output vectors. In the paper the concept of Kronecker's product is used, which allows us to represent unknown parameters in the form of vectors. For parameter estimation a stochastic approximation algorithm is employed. Using the concept of the stochastic Lyapunov function, global stability and optimality of the feedback system are established
  • 关键词:ARMAX model; self-tuning tracker; non-Gaussian noise; robust statistics; global stability; optimality
国家哲学社会科学文献中心版权所有