首页    期刊浏览 2024年11月10日 星期日
登录注册

文章基本信息

  • 标题:Latent semantic indexing for patent documents
  • 作者:Andreea Moldovan ; Radu Ioan Boţ ; Gert Wanka
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2005
  • 卷号:15
  • 期号:4
  • 出版社:De Gruyter Open
  • 摘要:Since the huge database of patent documents is continuously increasing, the issue of classifying, updating and retrieving patent documents turned into an acute necessity. Therefore, we investigate the efficiency of applying Latent Semantic Indexing, an automatic indexing method of information retrieval, to some classes of patent documents from the United States Patent Classification System. We present some experiments that provide the optimal number of dimensions for the Latent Semantic Space and we compare the performance of Latent Semantic Indexing (LSI) to the Vector Space Model (VSM) technique applied to real life text documents, namely, patent documents. However, we do not strongly recommend the LSI as an improved alternative method to the VSM, since the results are not significantly better
  • 关键词:Latent Semantic Indexing (LSI); Singular Value Decomposition (SVD); Vector Space Model (VSM); patent classification
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有