期刊名称:International Journal of Applied Mathematics and Computer Science
电子版ISSN:2083-8492
出版年度:2006
卷号:16
期号:4
出版社:De Gruyter Open
摘要:Text retrieval using Latent Semantic Indexing (LSI) with truncated Singular Value Decomposition (SVD) has been intensively studied in recent years. However, the expensive complexity involved in computing truncated SVD constitutes a major drawback of the LSI method. In this paper, we demonstrate how matrix rank approximation can influence the effectiveness of information retrieval systems. Besides, we present an implementation of the LSI method based on an eigenvalue analysis for rank approximation without computing truncated SVD, along with its computational details. Significant improvements in computational time while maintaining retrieval accuracy are observed over the tested document collections