首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Latent semantic indexing using eigenvalue analysis for efficient information retrieval
  • 本地全文:下载
  • 作者:Cherukuri Aswani Kumar ; Suripeddi Srinivas
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2006
  • 卷号:16
  • 期号:4
  • 出版社:De Gruyter Open
  • 摘要:Text retrieval using Latent Semantic Indexing (LSI) with truncated Singular Value Decomposition (SVD) has been intensively studied in recent years. However, the expensive complexity involved in computing truncated SVD constitutes a major drawback of the LSI method. In this paper, we demonstrate how matrix rank approximation can influence the effectiveness of information retrieval systems. Besides, we present an implementation of the LSI method based on an eigenvalue analysis for rank approximation without computing truncated SVD, along with its computational details. Significant improvements in computational time while maintaining retrieval accuracy are observed over the tested document collections
  • 关键词:information retrieval; latent semantic indexing; eigenvalues; rank reduction; singular value decomposition
国家哲学社会科学文献中心版权所有