首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Simultaneous localization and mapping: A feature-based probabilistic approach
  • 本地全文:下载
  • 作者:Piotr Skrzypczyński
  • 期刊名称:International Journal of Applied Mathematics and Computer Science
  • 电子版ISSN:2083-8492
  • 出版年度:2009
  • 卷号:19
  • 期号:4
  • DOI:10.2478/v10006-009-0045-z
  • 出版社:De Gruyter Open
  • 摘要:This article provides an introduction to Simultaneous Localization And Mapping (SLAM), with the focus on probabilistic SLAM utilizing a feature-based description of the environment. A probabilistic formulation of the SLAM problem is introduced, and a solution based on the Extended Kalman Filter (EKF-SLAM) is shown. Important issues of convergence, consistency, observability, data association and scaling in EKF-SLAM are discussed from both theoretical and practical points of view. Major extensions to the basic EKF-SLAM method and some recent advances in SLAM are also presented
  • 关键词:mobile robot; navigation; simultaneous localization and mapping; feature matching
国家哲学社会科学文献中心版权所有