首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Comparison of Hybrid Unique clustering techniques
  • 本地全文:下载
  • 作者:Marri. Suneetha ; R.Satya Prasad ; R.Mahesh
  • 期刊名称:International Journal of Innovative Research in Science, Engineering and Technology
  • 印刷版ISSN:2347-6710
  • 电子版ISSN:2319-8753
  • 出版年度:2016
  • 卷号:5
  • 期号:6
  • 页码:11731
  • DOI:10.15680/IJIRSET.2015.0506288
  • 出版社:S&S Publications
  • 摘要:Clustering is the most important technique in data mining. In data mining, clustering is very useful todiscover various similar patterns in the underlying data. The implementation of clustering algorithms are distance metricbased similarity measure in order to partition the database such that data points in the same partition are more similar thanpoints in different partitions. In this paper, the comparison of six clustering algorithms namely hierarchical clusteranalysis, k-means and fuzzy c-means algorithms, VFC-SA, UHAC-SA, PCA-UHAC-SA in infrared analysis on seven oralcancerous FTIR datasets. The results show the performance of all the proposed algorithms and its implementation.
  • 关键词:hierarchical cluster analysis (HCA); k-means and fuzzy c-means algorithms; VFC-SA; UHAC-SA; PCAUHAC-;SA.
国家哲学社会科学文献中心版权所有