期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:33
页码:E4920-E4927
DOI:10.1073/pnas.1610631113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Regulation of AMPA receptor (AMPAR) function is a fundamental mechanism controlling synaptic strength during long-term potentiation/depression and homeostatic scaling. AMPAR function and membrane trafficking is controlled by protein–protein interactions, as well as by posttranslational modifications. Phosphorylation of the GluA1 AMPAR subunit at S845 and S831 play especially important roles during synaptic plasticity. Recent controversy has emerged regarding the extent to which GluA1 phosphorylation may contribute to synaptic plasticity. Here we used a variety of methods to measure the population of phosphorylated GluA1-containing AMPARs in cultured primary neurons and mouse forebrain. Phosphorylated GluA1 represents large fractions from 12% to 50% of the total population under basal and stimulated conditions in vitro and in vivo. Furthermore, a large fraction of synapses are positive for phospho-GluA1–containing AMPARs. Our results support the large body of research indicating a prominent role of GluA1 phosphorylation in synaptic plasticity.
关键词:synaptic plasticity ; excitatory synapse ; AMPA receptor ; protein kinase A ; protein kinase C