期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2016
卷号:113
期号:35
页码:9699-9703
DOI:10.1073/pnas.1604717113
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Materials comprising porous structures, often in the form of interconnected concave cavities, are typically assembled from convex molecular building blocks. The use of nanoparticles with a characteristic nonconvex shape provides a promising strategy to create new porous materials, an approach that has been recently used with cagelike molecules to form remarkable liquids with “scrabbled” porous cavities. Nonconvex mesogenic building blocks can be engineered to form unique self-assembled open structures with tunable porosity and long-range order that is intermediate between that of isotropic liquids and of crystalline solids. Here we propose the design of highly open liquid-crystalline structures from rigid nanorings with ellipsoidal and polygonal geometry. By exploiting the entropic ordering characteristics of athermal colloidal particles, we demonstrate that high-symmetry nonconvex rings with large internal cavities interlock within a 2D layered structure leading to the formation of distinctive liquid-crystalline smectic phases. We show that these smectic phases possess uniquely high free volumes of up to ∼95%, a value significantly larger than the 50% that is typically achievable with smectic phases formed by more conventional convex rod- or disklike mesogenic particles.