首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Survey Paper on different Clustering techniques for Collaborative Filtering for services recommendation
  • 本地全文:下载
  • 作者:Reshma M Batule ; S.A.Itkar
  • 期刊名称:International Journal of Computer Science and Information Technologies
  • 电子版ISSN:0975-9646
  • 出版年度:2016
  • 卷号:7
  • 期号:3
  • 页码:1410-1413
  • 出版社:TechScience Publications
  • 摘要:Collaborative filtering (CF) is a techniquecommonly used to build personalized recommendationson the Web. Some popular websites that make use of thecollaborative filtering technology include Amazon,Netflix, iTunes, IMDB. Data sparseness is the mostimportant issue in CF. Data sparseness causes thesystem difficulty in determining the nearest neighboursof the target user accurately. Clustering can solve theproblem of data sparseness. Grouping a set of physicalor abstract objects into classes of similar objects, thisprocess is called as clustering. This paper presents themethods to generate recommendations using clusteringbasedcollaborative filtering approach.
  • 关键词:Clustering; Collaborative filtering; Nearest;Neighbours; Data sparseness; Personalised;recommendations.
国家哲学社会科学文献中心版权所有