首页    期刊浏览 2025年08月07日 星期四
登录注册

文章基本信息

  • 标题:Performance Characteristics Optimization of Electrical Discharge Machining Process Using Back Propagation Neural Network And Genetic Algorithm
  • 其他标题:Performance Characteristics Optimization of Electrical Discharge Machining Process Using Back Propagation Neural Network And Genetic Algorithm
  • 本地全文:下载
  • 作者:Robert Napitupulu ; Arif Wahyudi ; Bobby Oedy Pramoedyo Soepangkat
  • 期刊名称:Majalah Iptek = IPTEK : The Journal for Technology and Science
  • 印刷版ISSN:0853-4098
  • 电子版ISSN:2088-2033
  • 出版年度:2014
  • 卷号:25
  • 期号:3
  • DOI:10.12962/j20882033.v25i3.527
  • 语种:English
  • 出版社:IPTEK
  • 摘要:This study attempts to model and optimize the complicated electrical discharge machining (EDM) process using soft computing techniques. Artificial neural network (ANN) with back propagation algorithm is used to model the process. In this study, the machining parameters, namely pulse current, on time, off time and gap voltage are optimized with considerations of multiple performance characteristics such as metal removal rate (MRR) and surface roughness. As the output parameters are conflicting in nature so there is no single combination of cutting parameters, which provides the best machining performance. Genetic algorithm (GA) with properly defined objective functions was then adapted to the neural network to determine the optimal multiple performance characteristics.
  • 关键词:Electrical discharge machining (EDM); Artificial neural network (ANN); Multiple performance characteristics; Genetic algorithm (GA)
国家哲学社会科学文献中心版权所有