首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A minimum discrepancy approach to multivariate dimension reduction via $k$-means inverse regression
  • 本地全文:下载
  • 作者:Akim Adekpedjou ; C. Messan Setodji ; Xuerong Meggie Wen
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2009
  • 卷号:2
  • 期号:4
  • 页码:503-511
  • DOI:10.4310/SII.2009.v2.n4.a11
  • 出版社:International Press
  • 摘要:We proposed a new method to estimate the intra-cluster adjusted central subspace for regressions with multivariate responses. Following Setodji and Cook (2004), we made use of the $k$-means algorithm to cluster the observed response vectors. Our method was designed to recover the intracluster information and outperformed previous method with respect to estimation accuracies on both the central subspace and its dimension. It also allowed us to test the predictor effects in a model-free approach. Simulation and a real data example were given to illustrate our methodology.
  • 关键词:multivariate regression; dimension reduction; central subspaces; intra-cluster information; k-means clustering
国家哲学社会科学文献中心版权所有