首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Regularized estimation of hemodynamic response function for fMRI data
  • 本地全文:下载
  • 作者:Chunming Zhang ; Zhengjun Zhang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2010
  • 卷号:3
  • 期号:1
  • 页码:15-31
  • DOI:10.4310/SII.2010.v3.n1.a2
  • 出版社:International Press
  • 摘要:One of the primary goals in analyzing fMRI data is to estimate the Hemodynamic Response Function (HRF), which is a large-dimensional parameter vector possessing some form of sparsity. This paper introduces a varyingdimensional model for the HRF, and develops novel regularization methods for estimating the HRF from fMRI time series via incorporating the sparsity feature. Particularly, we present three types of penalty choice methods: the Lasso, the adaptive Lasso and the SCAD. Simulation studies demonstrate the advantages of regularization methods, in terms of sparsity recovery, over conventional non-regularized approaches which restrict the HRF to be fixed low dimensional without capturing the sparsity structure. We illustrate the regularized methods for estimating the HRF using a real fMRI data set and compare with results offered by a popular imaging analysis tool AFNI.
  • 关键词:covariance matrix; linear model; loss function; penalty; sparsity; stimuli; time resolution
国家哲学社会科学文献中心版权所有