摘要:In this paper, we consider the penalized empirical likelihood (PEL) method of Bartolucci (2007) for inference on the population mean which is a modification of the standard empirical likelihood and employs a penalty based on the Mahalanobis-distance. We derive the asymptotic distributions of the PEL ratio statistic when the dimension of the observations increases with the sample size. Finite sample properties of the method are investigated through a small simulation study.
关键词:asymptotic null distribution; empirical likelihood; high dimension; regularization; simultaneous tests