首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Dimension reduction in functional regression using mixed data canonical correlation analysis
  • 作者:Nan Lin ; Guochang Wang ; Baoxue Zhang
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2013
  • 卷号:6
  • 期号:2
  • 页码:187-196
  • DOI:10.4310/SII.2013.v6.n2.a3
  • 出版社:International Press
  • 摘要:We propose a new dimension reduction method, mixed data canonical correlation (MDCANCOR), for functional regression with a scalar response and a functional predictor. MDCANCOR achieves dimension reduction using the canonical correlation analysis between the functional predictor and a set of B-spline basis functions that represent the transformed response space. And we propose a modified version of BIC to determine the dimensionality of the effective dimension reduction (EDR) space. This criterion is generally applicable to dimension reduction problems in functional regression. Asymptotically, we prove that MDCANCOR consistently estimates the directions when the dimensionality of the EDR space is given, and the modified BIC consistently estimates the dimensionality of the EDR space. Both simulation and real data examples show that the MDCANCOR method performs similarly as the regularized functional sliced inverse regression and better than other existing dimension reduction methods.
  • 关键词:dimension reduction; effective dimension reduction; functional regression; mixed-data canonical correlation; splines
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有