首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A semi-parametric approach for imputing mixed data
  • 作者:Irene B. Helenowski ; Hakan Demirtas
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2013
  • 卷号:6
  • 期号:3
  • 页码:399-412
  • DOI:10.4310/SII.2013.v6.n3.a11
  • 出版社:International Press
  • 摘要:In this work, we present a semi-parametric method for imputing mixed data which allows us to relax assumptions of the general location model. This approach involves transforming continuous and binary variables to normally distributed data, imputing the data via joint modeling under the normality assumption, and back-transforming the data to their original scale. Transformation and backtransformation of the data comprise the nonparametric portion, and multiple imputation under the normality assumption constitutes the parametric portion of our method. Simulations involving generated mixed data with binary variables and with continuous variables following normal, $t$, Gamma, and mixture Gamma distributions and real data applications indicate promising results, leading us to recommend our approach as a possible avenue for imputing mixed data by semi-parametric means. Full Text (PDF format)
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有