首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimal estimation of sparse correlation matrices of semiparametric Gaussian copulas
  • 作者:Lingzhou Xue ; Hui Zou
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2014
  • 卷号:7
  • 期号:2
  • 页码:201-209
  • DOI:10.4310/SII.2014.v7.n2.a5
  • 出版社:International Press
  • 摘要:Statistical inference of semiparametric Gaussian copulas is well studied in the classical fixed dimension and large sample size setting. Nevertheless, optimal estimation of the correlation matrix of semiparametric Gaussian copula is understudied, especially when the dimension can far exceed the sample size. In this paper we derive the minimax rate of convergence under the matrix $\ell_1$-norm and $\ell_2$-norm for estimating large correlation matrices of semiparametric Gaussian copulas when the correlation matrices are in a weak $\ell_q$ ball. We further show that an explicit rank-based thresholding estimator adaptively attains minimax optimal rate of convergence simultaneously for all $0 \leq q \lt 1$. Numerical examples are provided to demonstrate the finite sample performance of the rank-based thresholding estimator.
  • 关键词:correlation matrix; Gaussian copula; minimax optimality; rank correlation; thresholding; weak $\ell_q$ ball
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有