首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Bayesian nonparametric density estimation for doubly-truncated data
  • 作者:Yuhui Chen ; Timothy Hanson
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2014
  • 卷号:7
  • 期号:4
  • 页码:455-463
  • DOI:10.4310/SII.2014.v7.n4.a3
  • 出版社:International Press
  • 摘要:A Bayesian nonparametric density estimator is presented for doubly-truncated data. The estimator is based on a Pólya tree prior, and readily extended to truncated regression. The approach nicely blends a standard parametric normal fit with the nonparametric maximum likelihood estimator. Since the density is directly modeled, a standard likelihood approach applies; inference is efficiently obtained through an adaptiveMarkov chain Monte Carlo and no manual tuning is required. The estimator is broadly illustrated on simulated data, the quasar luminosity data of Efron and Petrosian (1999), times of cancer diagnosis considered in Moreira and Uña-Álvarez (2012), and the AIDS induction time data of Lagakos, Barraj, and De Gruttola (1988).
  • 关键词:Pólya tree; regression; truncation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有