首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Performance analysis on least absolute shrinkage selection operator, elastic net and correlation adjusted elastic net regression methods
  • 本地全文:下载
  • 作者:Pascalis Kadaro Matthew ; Abubakar Yahaya
  • 期刊名称:International Journal of Advanced Statistics and Probability
  • 电子版ISSN:2307-9045
  • 出版年度:2015
  • 卷号:3
  • 期号:1
  • 页码:93-99
  • DOI:10.14419/ijasp.v3i1.4364
  • 出版社:Journal of Advanced Computer Science & Technology
  • 摘要:Some few decades ago, penalized regression techniques for linear regression have been developed specifically to reduce the flaws inherent in the prediction accuracy of the classical ordinary least squares (OLS) regression technique. In this paper, we used a diabetes data set obtained from previous literature to compare three of these well-known techniques, namely: Least Absolute Shrinkage Selection Operator (LASSO), Elastic Net and Correlation Adjusted Elastic Net (CAEN). After thorough analysis, it was observed that CAEN generated a less complex model.
  • 关键词:Convex Optimization;Cross Validation;Multicollinearity;Penalized Regression.
国家哲学社会科学文献中心版权所有