首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Quasi-E-Bayesian criteria versus quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian methods for estimating the scale parameter of the Erlang distribution
  • 本地全文:下载
  • 作者:Hesham Reyad ; Adil Younis ; Amal Alkhedir
  • 期刊名称:International Journal of Advanced Statistics and Probability
  • 电子版ISSN:2307-9045
  • 出版年度:2016
  • 卷号:4
  • 期号:1
  • 页码:62-74
  • DOI:10.14419/ijasp.v4i1.6095
  • 出版社:Journal of Advanced Computer Science & Technology
  • 摘要:This paper proposes a new modification for the E-Bayesian method of estimation to introduce a new technique namely Quasi E-Bayesian method (or briefly QE-Bayesian). The suggested criteria built in replacing the likelihood function by the quasi likelihood function in the E-Bayesian technique. This study is devoted to evaluate the performance of the new method versus the quasi-Bayesian, quasi-hierarchical Bayesian and quasi-empirical Bayesian approaches in estimating the scale parameter of the Erlang distribution. All estimators are obtained under symmetric loss function [squared error loss (SELF))] and four different asymmetric loss functions [Precautionary loss function (PLF), entropy loss function (ELF), Degroot loss function (DLF) and quadratic loss function (QLF)]. The properties of the QE-Bayesian estimates are introduced and the relations between the QE-Bayes and quasi-hierarchical Bayes estimates are discussed. Comparisons among all estimators are performed in terms of mean square error (MSE) via Monte Carlo simulation.
  • 关键词:Erlang Distribution;Quasi-Bayes Estimates;Quasi-E-Bayeses Estimates;Quasi-Empirical Bayes Estimates;Quasi-Hierarchical Bayes Esti-mates.
国家哲学社会科学文献中心版权所有