首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Analyzing the Impact of Genetic Parameters on Gene Grouping Genetic Algorithm and Clustering Genetic Algorithm
  • 本地全文:下载
  • 作者:R. Sivaraj ; T. Ravichandran
  • 期刊名称:Computer Engineering and Intelligent Systems
  • 印刷版ISSN:2222-1727
  • 电子版ISSN:2222-2863
  • 出版年度:2012
  • 卷号:3
  • 期号:1
  • 页码:10-19
  • 语种:English
  • 出版社:International Institute for Science, Technology Education
  • 摘要:Genetic Algorithms are stochastic randomized procedures used to solve search and optimization problems. Many multi-population and multi-objective Genetic Algorithms are introduced by researchers to achieve improved performance. Gene Grouping Genetic Algorithm (GGGA) and Clustering Genetic Algorithm (CGA) are of such kinds which are proved to perform better than Standard Genetic Algorithm (SGA). This paper compares the performance of both these algorithms by varying the genetic parameters. The results show that GGGA provides good solutions, even to large-sized problems in reasonable computation time compared to CGA and SGA.
  • 关键词:Stochastic; randomized; multi-population; Gene Grouping Genetic Algorithm; Clustering Genetic Algorithm.
国家哲学社会科学文献中心版权所有