出版社:International Institute for Science, Technology Education
摘要:Brain computer interfaces (BCI) provides a non-muscular channel for controlling a device through electroencephalographic signals to perform different tasks. The BCI system records the Electro-encephalography (EEG) and detects specific patterns that initiate control commands of the device. The efficiency of the BCI depends upon the methods used to process the brain signals and classify various patterns of brain signal accurately to perform different tasks. Due to the presence of artifacts in the raw EEG signal, it is required to preprocess the signals for efficient feature extraction. In this paper it is proposed to implement a BCI system which extracts the EEG features using Discrete Cosine transforms. Also, two stages of filtering with the first stage being a butterworth filter and the second stage consisting of an moving average 15 point spencer filter has been used to remove random noise and at the same time maintaining a sharp step response. The classification of the signals is done using the proposed Semi Partial Recurrent Neural Network. The proposed method has very good classification accuracy compared to conventional neural network classifiers.