首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Stereo-Based Tracking-by-Multiple Hypotheses Framework for Multiple Vehicle Detection and Tracking
  • 作者:Young-Chul Lim ; Jonghwan Kim ; Chung-Hee Lee
  • 期刊名称:International Journal of Advanced Robotic Systems
  • 印刷版ISSN:1729-8806
  • 电子版ISSN:1729-8814
  • 出版年度:2013
  • 卷号:10
  • 期号:7
  • 页码:293
  • DOI:10.5772/56688
  • 语种:English
  • 出版社:SAGE Publications
  • 摘要:In this paper, we present a tracking-by-multiple hypotheses framework to detect and track multiple vehicles accurately and precisely. The tracking-by-multiple hypotheses framework consists of obstacle detection, vehicle recognition, visual tracking, global position tracking, data association and particle filtering. The multiple hypotheses are from obstacle detection, vehicle recognition and visual tracking. The obstacle detection detects all the obstacles on the road. The vehicle recognition classifies the detected obstacles as vehicles or non-vehicles. 3D feature-based visual tracking estimates the current target state using the previous target state. The multiple hypotheses should be linked to corresponding tracks to update the target state. The hierarchical data association method assigns multiple tracks to the correct hypotheses with multiple similarity functions. In the particle filter framework, the target state is updated using the Gaussian motion model and the observation model with associated multiple hypotheses. The experimental results demonstrate that the proposed method enhances the accuracy and precision of the region of interest.
  • 关键词:Stereo Vision; Multiple Object Tracking; Bayesian Filter; Multiple Hypotheses; Data Association
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有