期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2014
卷号:11
期号:4
页码:64
DOI:10.5772/58562
语种:English
出版社:SAGE Publications
摘要:Recently, artificial neural networks have been used to solve the inverse kinematics problem of redundant robotic manipulators, where traditional solutions are inadequate. The training algorithm and network topology affect the performance of the neural network. There are several training algorithms used in the training of neural networks. In this study, the effect of various learning algorithms on the learning performance of the neural networks on the inverse kinematics model learning of a seven-joint redundant robotic manipulator is investigated. After the implementation of various training algorithms, the Levenberg-Marquardth (LM) algorithm is found to be significantly more efficient compared to other training algorithms. The effect of the various network types, activation functions and number of neurons in the hidden layer on the learning performance of the neural network is then investigated using the LM algorithm. Among different network topologies, the best results are obtained for the feedforward network model with logistic sigmoid-activation function (logsig) and 41 neurons in the hidden layer. The results are presented with graphics and tables.
关键词:Robotics; Neural Networks; Training Algorithms; Machine Learning; Inverse Kinematics Solution