期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2014
卷号:11
期号:9
页码:154
DOI:10.5772/58761
语种:English
出版社:SAGE Publications
摘要:For natural human-robot interaction, the location and shape of facial features in a real environment must be identified. One robust method to track facial features is by using a particle filter and the active appearance model. However, the processing speed of this method is too slow for utilization in practice. In order to improve the efficiency of the method, we propose two ideas: (1) changing the number of particles situationally, and (2) switching the prediction model depending upon the degree of the importance of each particle using a combination strategy and a clustering strategy. Experimental results show that the proposed method is about four times faster than the conventional method using a particle filter and the active appearance model, without any loss of performance.