期刊名称:International Journal of Advanced Robotic Systems
印刷版ISSN:1729-8806
电子版ISSN:1729-8814
出版年度:2012
卷号:9
期号:4
页码:132
DOI:10.5772/51893
语种:English
出版社:SAGE Publications
摘要:A new adaptive Unscented Kalman Filter (UKF) algorithm for actuator failure estimation is proposed. A novel filter method with the ability to adapt to the statistical characteristics of noise is presented to improve the estimation accuracy of traditional UKFs. A new algorithm (Kalman Filter (KF) -based adaptive UKF), with the ability to adapt to the statistical characteristic of noise, is proposed to improve the UKF's performance. Such an adaptive mechanism is intended to compensate for the lack of prior knowledge. The asymptotic property of the adaptive UKF is discussed. Actuator Healthy Coefficients (AHCs) are introduced to denote the actuator failure model while the adaptive UKF is employed for the online estimation of both the flight states and the AHCs' parameters of a rotorcraft UAV (RUAV). Simulations are conducted using the model of a ServoHeli-90 RUAV from the Shenyang Institute of Automation, CAS. The results are compared with those obtained by normal UKF to demonstrate the effectiveness and improvements of the adaptive UKF algorithm. Besides this, we also compare this algorithm with the MIT-based one which we proposed in previous research.