首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On-Line Labeled Topic Model
  • 本地全文:下载
  • 作者:YongHeng Chen ; Yaojin Lin ; Hao Yue
  • 期刊名称:The Open Cybernetics & Systemics Journal
  • 电子版ISSN:1874-110X
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:1170-1176
  • DOI:10.2174/1874110X01509011170
  • 出版社:Bentham Science Publishers Ltd
  • 摘要:

    A large number of electronic documents are labeled using human-interpretable annotations. High-efficiency text mining on such data set requires generative model that can flexibly comprehend the significance of observed labels while simultaneously uncovering topics within unlabeled documents. This paper presents a novel and generalized on-line labeled topic model (OLT) tracking the time development of extracted topics through a structured multi-labeled data set. Our topic model has an incrementally updated principle based on time slices in an on-line fashion, and can detect dynamic trending for labeled topics in parallel. Empirical results are presented to demonstrate lower perplexity and high performance of our proposed model when compared with other models.

国家哲学社会科学文献中心版权所有