期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2016
卷号:7
期号:9
DOI:10.14569/IJACSA.2016.070950
出版社:Science and Information Society (SAI)
摘要:Most of the information retrieval (IR) models rank the documents by computing a score using only the lexicographical query terms or frequency information of the query terms in the document. These models have a limitation as they does not consider the terms proximity in the document or the term-mismatch or both of the two. The terms proximity information is an important factor that determines the relatedness of the document to the query. The ranking functions of the Spectral-Based Information Retrieval Model (SBIRM) consider the query terms frequency and proximity in the document by comparing the signals of the query terms in the spectral domain instead of the spatial domain using Discrete Wavelet Transform (DWT). The query expansion (QE) approaches are used to overcome the word-mismatch problem by adding terms to query, which have related meaning with the query. The QE approaches are divided to statistical approach Kullback-Leibler divergence (KLD) and semantic approach P-WNET that uses WordNet. These approaches enhance the performance. Based on the foregoing considerations, the objective of this research is to build an efficient QESBIRM that combines QE and proximity SBIRM by implementing the SBIRM using the DWT and KLD or P-WNET. The experiments conducted to test and evaluate the QESBIRM using Text Retrieval Conference (TREC) dataset. The result shows that the SBIRM with the KLD or P-WNET model outperform the SBIRM model in precision (P@), R-precision, Geometric Mean Average Precision (GMAP) and Mean Average Precision (MAP).
关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Information Retrieval; Discrete Wavelet Transform; Query Expansion; Term Signal; Spectral Based Retrieval Method