Solar-to-hydrogen conversion based on photocatalytic water splitting is a promising pathway for sustainable hydrogen production. The photocatalytic process requires highly active, inexpensive, and earth-abundant materials as photocatalysts. As a presentative layer-structured transition metal dichalcogenides, molybdenum disulfide (MoS2) is attracting intensive attention due to its unique electro and photo properties. In this article, we comprehensively review the recent research efforts of exploring MoS2 as a co-catalyst for photocatalytic hydrogen production from water, with emphasis on its combination with CdS, CdSe, graphene, carbon nitride, TiO2, and others. It is shown that MoS2–semiconductor composites are promising photocatalysts for hydrogen evolution from water under visible light irradiation.