首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Smoothing spline ANOVA for super-large samples: scalable computation via rounding parameters
  • 作者:Nathaniel E. Helwig ; Ping Ma
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2016
  • 卷号:9
  • 期号:4
  • 页码:433-444
  • DOI:10.4310/SII.2016.v9.n4.a3
  • 出版社:International Press
  • 摘要:In the current era of big data, researchers routinely collect and analyze data of super-large sample sizes. Data-oriented statistical methods have been developed to extract information from super-large data. Smoothing spline ANOVA (SSANOVA) is a promising approach for extracting information from noisy data; however, the heavy computational cost of SSANOVA hinders its wide application. In this paper, we propose a new algorithm for fitting SSANOVA models to super-large sample data. In this algorithm, we introduce rounding parameters to make the computation scalable. To demonstrate the benefits of the rounding parameters, we present a simulation study and a real data example using electroencephalography data. Our results reveal that (using the rounding parameters) a researcher can fit nonparametric regression models to very large samples within a few seconds using a standard laptop or tablet computer.
  • 关键词:smoothing spline ANOVA; rounding parameter; scalable algorithm
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有