首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A hybrid transfer learning model for crude oil price forecasting
  • 本地全文:下载
  • 作者:Jin Xiao ; Yi Hu ; Yi Xiao
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2017
  • 卷号:10
  • 期号:1
  • 页码:119-130
  • DOI:10.4310/SII.2017.v10.n1.a11
  • 出版社:International Press
  • 摘要:Most of the existing models for oil price forecasting only use the data in the forecasted time series. This study proposes a hybrid transfer learning model (HTLM) for crude oil price forecasting. We first selectively transfer some related time series in the source domain to assist in modeling the target time series by using a transfer learning technique, and then construct the forecasting model using the analog complexing (AC) method. Further, we introduce a genetic algorithm to find the optimal match between two important parameters in HTLM. Finally, we use two main crude oil price time series—the West Texas Intermediate (WTI) and the Brent crude oil spot prices—for empirical analysis. Our results show the effectiveness and superiority of the proposed model compared with existing models.
  • 关键词:hybrid transfer learning model; analog complexing; genetic algorithm; crude oil price forecasting; transfer learning technique
国家哲学社会科学文献中心版权所有