首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Hybrid Genetic Algorithm with K-Means for Clustering Problems
  • 本地全文:下载
  • 作者:Ahamed Al Malki ; Mohamed M. Rizk ; M. A. El-Shorbagy
  • 期刊名称:Open Journal of Optimization
  • 印刷版ISSN:2325-7105
  • 电子版ISSN:2325-7091
  • 出版年度:2016
  • 卷号:05
  • 期号:02
  • 页码:71-83
  • DOI:10.4236/ojop.2016.52009
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim.
  • 关键词:Cluster Analysis;Genetic Algorithm;K-Means
国家哲学社会科学文献中心版权所有