首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Crystal structures and dynamical properties of dense CO2
  • 作者:Xue Yong ; Hanyu Liu ; Min Wu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:40
  • 页码:11110-11115
  • DOI:10.1073/pnas.1601254113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Structural polymorphism in dense carbon dioxide (CO2) has attracted significant attention in high-pressure physics and chemistry for the past two decades. Here, we have performed high-pressure experiments and first-principles theoretical calculations to investigate the stability, structure, and dynamical properties of dense CO2. We found evidence that CO2-V with the 4-coordinated extended structure can be quenched to ambient pressure below 200 K—the melting temperature of CO2-I. CO2-V is a fully coordinated structure formed from a molecular solid at high pressure and recovered at ambient pressure. Apart from confirming the metastability of CO2-V (I-42d) at ambient pressure at low temperature, results of ab initio molecular dynamics and metadynamics (MD) simulations provided insights into the transformation processes and structural relationship from the molecular to the extended phases. In addition, the simulation also predicted a phase V′(Pna21) in the stability region of CO2-V with a diffraction pattern similar to that previously assigned to the CO2-V (P212121) structure. Both CO2-V and -V′ are predicted to be recoverable and hard with a Vicker hardness of ∼20 GPa. Significantly, MD simulations found that the CO2 in phase IV exhibits large-amplitude bending motions at finite temperatures and high pressures. This finding helps to explain the discrepancy between earlier predicted static structures and experiments. MD simulations clearly indicate temperature effects are critical to understanding the high-pressure behaviors of dense CO2 structures—highlighting the significance of chemical kinetics associated with the transformations.
  • 关键词:carbon dioxide ; molecular dynamics ; high pressure ; material science
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有