首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:High-dimensional regression adjustments in randomized experiments
  • 作者:Stefan Wager ; Wenfei Du ; Jonathan Taylor
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2016
  • 卷号:113
  • 期号:45
  • 页码:12673-12678
  • DOI:10.1073/pnas.1614732113
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We study the problem of treatment effect estimation in randomized experiments with high-dimensional covariate information and show that essentially any risk-consistent regression adjustment can be used to obtain efficient estimates of the average treatment effect. Our results considerably extend the range of settings where high-dimensional regression adjustments are guaranteed to provide valid inference about the population average treatment effect. We then propose cross-estimation, a simple method for obtaining finite-sample–unbiased treatment effect estimates that leverages high-dimensional regression adjustments. Our method can be used when the regression model is estimated using the lasso, the elastic net, subset selection, etc. Finally, we extend our analysis to allow for adaptive specification search via cross-validation and flexible nonparametric regression adjustments with machine-learning methods such as random forests or neural networks.
  • 关键词:high-dimensional confounders ; randomized trials ; regression adjustment
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有