期刊名称:Bulletin of the Institute of Heat Engineering
印刷版ISSN:2083-4187
出版年度:2015
卷号:95
期号:2
页码:119-125
语种:English
出版社:Warsaw University of Technology
摘要:In the present paper the quantitative relationship between the heat and mass transfer in the Aixtron VP508 hot wall CVD reactor and the epitaxial growth of silicon carbide is determined. The aim of this study was to estimate optimal process conditions for obtaining monocrystalline silicon carbide epi-layers with the most homogenous thickness. Since there are many parameters influencing reactions on the crystal area, such as temperature, pressure, gas flow and reactor geometry, it is dicult to design an optimal process. Detailed 3D modeling was used to gain insight into the process conditions, as it is problematic to experimentally determine the exact distribution of heat and mass transfer inside the reactor during epitaxial growth. Numerical simulations allow one to understand the process by calculating the heat and mass transfer distribution during the epitaxial growth of silicon carbide. The present approach was applied to enhance the performance of the Aixtron VP508 reactor.