首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Tau-leaped Particle Learning
  • 本地全文:下载
  • 作者:Jarad Niemi ; Michael Ludkovski
  • 期刊名称:Online Journal of Public Health Informatics
  • 电子版ISSN:1947-2579
  • 出版年度:2013
  • 卷号:5
  • 期号:1
  • 语种:English
  • 出版社:University of Illinois at Chicago
  • 摘要:Development of effective policy interventions to stem disease outbreaks requires knowledge of the current state of affairs, e.g. how many individuals are currently infected, a strain's virulence, etc, as well as our uncertainty of these values. A Bayesian inferential approach provides this information, but at a computational expense. We develop a sequential Bayesian approach based on an epidemiological compartment model and noisy count observations of the transitions between compartments.
国家哲学社会科学文献中心版权所有