A brief interpretation of summer flounder, Paralichthys dentatus, movements and stock structure with new tagging data on juveniles.
Kraus, Richard T. ; Musick, John A.
Introduction
Summer flounder, Paralichthys dentatus, is a valuable flatfish
species that is highly sought by both commercial and recreational
fishermen (National Marine Fisheries Service, 1999; NEFSC (1)). Through
the 1980's and 1990's, the stock exhibited classic symptoms of
overfishing, including declines in landings, declines in abundance and
recruitment indices, and an age-structure with predominately young fish,
less than age-3 (NEFSC (1)). Summer flounder are managed as a single
stock along the U.S. Atlantic coast from the Canadian border to the
southern border of North Carolina, and recent actions to rebuild the
stock have sought to increase minimum size limits and reduce quotas
(NEFSC (1)). With recent quota reductions and an increase in minimum
size limits, the age-structure has expanded, fishing mortality has
decreased, and the stock is recovering (NEFSC (1)). The stock structure
of summer flounder is a crucial consideration for management, because
the vital population rates, upon which regulations are based, should be
homogeneous within a stock (Hilborn and Walters, 1992). In this paper,
we present a review of information on the ecology and movements of
summer flounder drawn largely from government documents and unpublished
theses and dissertations. Collectively, these studies and new tagging
data on juveniles suggest that there are multiple stocks within the
management area.
Life Cycle
Several sources provide detailed life-cycle information; this brief
background, with major points concerning spatial distribution of eggs,
larvae, and juveniles, is based on Able and Kaiser. (2) Summer flounder
migrate annually to inshore estuarine and coastal areas during the
summer and to offshore areas on the continental slope during winter.
Spawning takes place in the fall and winter and progresses from north to
south along the continental shelf. In fall, winter, and spring, eggs and
larvae can be found throughout shelf waters of the management area as
far north as Georges Bank. Smith (1973) observed three concentrations of
eggs that suggested separate spawning centers (and potential stocks):
one off New Jersey, one along the Virginia North Carolina coast, and one
south of Cape Hatteras, N.C. From November to April, pelagic larvae
enter estuaries and coastal lagoons where they metamorphose, then remain
inshore or near shore as benthic juveniles. With declining fall water
temperatures, juveniles and adults depart from those inshore habitats.
Despite extensive sampling in the management area, juvenile summer
flounder are only found from southern New Jersey to North Carolina
(Smith and Daiber, 1977; Able et al., 1990; Burke et al., 1991; Malloy
and Targett, 1991; Szedlmayer et al., 1992; Norcross and Wyanski, 1993).
The absence of juveniles in northern New Jersey waters and estuaries
farther north may be explained by low temperatures, which occur
frequently during the settlement period and can cause acute juvenile
mortality (Malloy and Targett, 1991; Malloy and Targett, 1994). An
alternative explanation suggested by Able et al. (1990) is that northern
juveniles might utilize a continental shelf nursery; however, sampling
of the continental shelf for juvenile summer flounder has been
unproductive, and fully metamorphosed larvae have never been reported
from shelf waters.
The lack of information on fully metamorphosed larvae from the
continental shelf leaves the issue of an offshore nursery unresolved;
however, the larval stage duration is variable and may be protracted
over several months, with potential for large-scale dispersal of larvae.
Rogers and Van Den Avyle (3) related that eggs and larvae off New Jersey
and Virginia might be carded passively by a dominant southwesterly flow
toward estuaries of Virginia and North Carolina. If southwesterly
transport of eggs and larvae was significant, then estuaries in the
southern part of the range might contain both juveniles that were
spawned off New Jersey and those that were spawned along the
Virginia-North Carolina coastline (Rogers and Van Den Avyle (3)).
Further, if there were no juvenile nursery on the shelf off New Jersey,
then adult flounder in the northern part of the range would have to
occur as a result of juveniles migrating from southern nurseries. Thus,
there is a testable hypothesis that marked juveniles from estuaries in
the southern part of the range will be recaptured to the north as
adults. To test this hypothesis, we conducted a tagging study on
juvenile summer flounder in Virginia and present the results in another
section of this paper. In summary, spatial distribution of eggs suggests
three spawning aggregations of summer flounder, and competing hypotheses
to explain larval and juvenile distribution also suggest that larvae
from the two northern most aggregations may intermingle as juveniles.
Phenotypic Variation
The potential existence of independent spawning aggregations of
summer flounder in the management area has prompted many studies that
compare phenotypic traits among groups determined a priori. While
environmental factors affect expression of the traits and can confound
interpretations, some have made efforts to control for environmental
effects, and geographically distinct phenotypes have been described as
evidence of multiple stocks. Latitudinal variation in growth rates has
been observed through holding experiments, length frequency analysis,
and through back-calculation of size-at-age from hard parts (Dery, 1981;
Powell, 1982; Szedlmayer et al., 1992; Malloy and Targett, 1994; Burke
et al., 2000). Morphometric and meristic analyses were able to
discriminate differences among individuals from north and south of Cape
Hatteras (Ginsburg, 1952; Smith and Daiber, 1977; Wilk et al., 1980;
Fogarty et al., 1983, Delaney, 1986). Gel-electrophoresis isozyme analysis further suggests that Cape Hatteras acts as a zoogeographic
barrier to the mixing of populations from the north and south (Van
Housen, 1984). The variation in growth rates provides a justification
for managing multiple stocks (Burke et al., 2000), and the
morphological, meristic, and biochemical results could be applied to
identify landings from separate stocks. These phenotypic delineations of
stock structure have not motivated managers to consider multiple stocks,
and lack of a genetic basis for stock structure (Jones and Quattro,
1999) has been used to justify managing summer flounder as a single
stock (NEFSC (1)).
Mark-recapture Studies
Small amounts of mixing between populations can obscure genetic
differences, even when there is sound justification for multiple stocks
(Ryman and Utter, 1987). Further, stock integrity can be maintained
behaviorally, without morphological differences. Patterns in the
movements of summer flounder, inferred from mark-recapture studies, show
distinct geographic groups that may over-winter together (refer to
Figure 1 during the following discussion).
[FIGURE 1 OMITTED]
One group occurs as adults north of Cape Hatteras, N.C., during the
summer, and these individuals move during the fall toward continental
slope habitats off Virginia and North Carolina. Individuals tagged in
the seaside estuaries of Long Island, N.Y., and inshore near Cape May and Sandy Hook, N.J., were recaptured to the south and east (yet north
of Cape Hatteras), with the greatest number of recaptures from the shelf
break during the winter months (Westman and Neville (4), Murawski (5)).
The pattern of recaptures suggested directed movement to shelf waters
off New Jersey, followed by gradual southerly movement along the shelf
break. More recent tagging efforts off Jones Beach, N.Y., further
supported the tendency for the northern stock to remain north of Cape
Hatteras (with one exceptional recapture far to the south in Georgia
(Monaghan (6))). In coastal areas near Oregon Inlet, N.C., adult summer
flounder moved offshore during fall and winter, but tagging data did not
indicate any significant tendency to move to the south or north (Burke
et al., 2000). Individuals tagged in estuaries and coastal areas of
Virginia over-wintered at the shelf break off of Virginia and North
Carolina, and a pattern of egress in which many individuals moved south
along the Virginia-North Carolina coastline before moving offshore was
also evident (Desfosse, 1995). The two apparent fall movement behaviors
that occur north of Cape Hatteras (moving immediately offshore vs.
following the coastline) provide a mechanism to explain the spawning
aggregations indicated by Smith (1973). Van Housen (1984) termed these
contingents the offshore and trans-Hatteras stocks; however, the
integrity of these behaviors is still uncertain. The spring migration of
adults to inshore areas appears to balance the fall migration.
Individuals tagged off Cape Cod, at Hudson Canyon, and off the
Virginia-North Carolina coast on their presumed wintering grounds were
later recaptured inshore to the north and east (Burke et al., 2000)
(Monaghan (6), Hamer and Lux (7), Lux and Nichy (8), Gillikin (9)).
Movements and integrity of the group of summer flounder that occurs
north of Cape Hatteras are also supported by data from the American
Littoral Society (ALS). The ALS conducts a recreational-angler-based
tagging program, and data were obtained from Gary Shepherd at the NMFS Northeast Fisheries Science Center, Woods Hole, Mass. (personal
commun.). Excluding erroneous release locations (n=23), 2,350 recaptures
were reported from 32,997 releases during the years 1983 to 1999 (5
tagged flounder were re-released and captured again and multiple
recaptures of the same fish were treated as independent recaptures). Of
these recaptures, 2,301 contained enough information to determine
latitudinal movement, north or south. In the majority of recaptures
(n=1,612, 70%), no latitudinal movement from the release area was
observed (Table 1). Of the flounder that were released north of Cape
Henry, Va., and exhibited latitudinal movement, there were more
recaptured north of the release locations in all seasons except winter
(Table 1). None of the flounder released north of Cape Henry, Va., were
recaptured south of Cape Hatteras, N.C. South of Cape Henry, Va., few
recaptures were observed (n=16) and only two of these indicated
movement, which was to the south (Table 1). In general, the ALS data
support expected seasonal movements of summer flounder north of Cape
Hatteras and segregation of this group from populations south of Cape
Hatteras.
A second group of summer flounder in the management area occurs in
the sounds and estuaries of North Carolina during the summer and
offshore to the shelf break during the winter. Monaghan (8) tagged adult
and juvenile summer flounder in the sounds of North Carolina and
observed no recaptures from outside of the sounds that were north of
Cape Hatteras (excluding those within 20 km of the release areas).
Additional tagging effort in North Carolina supported hypothesized
seasonal migrations of northern and southern stocks of summer flounder,
and significant non-random movement to the south was observed during
summer, fall, and winter in those fish tagged south of Cape Hatteras,
N.C. (Burke et al., 2000). Therefore, spawning aggregations south of
Cape Hatteras may be comprised of summer flounder from inshore areas of
North Carolina, and individuals from groups north and south of Cape
Hatteras likely intermingle during winter. The potential integrity and
mixing of these groups has important implications for management,
especially in light of the fact that the majority of coastwide landings
come from the North Carolina winter trawl fishery (NEFSC (1)).
New Tagging Data
In the studies reviewed thus far, there appears to be segregation
of summer flounder that occur in North Carolina during the summer from
those that occur north of Cape Hatteras, and there is a restricted
spatial distribution of inshore juveniles from southern New Jersey to
Virginia in the northern group. Further, Desfosse (1995) observed that
adults recaptured to the north and east of Virginia were smaller (in TL)
and younger at the time of tagging than those recaptured near the
release areas. Thus, it was apparent that information on the recruitment
of juveniles to adult landings was needed to understand the spatial
dynamics of summer flounder, and a tagging study was conducted on
juveniles from estuaries in Virginia. The initial results were part of a
thesis (Kraus, 1998); however, since it was written, the number of
reported recaptures has more than doubled, and a trend has become
apparent. A detailed description of the study is given by Kraus (1998),
but, briefly, 10,607 juvenile summer flounder were marked and released
in Chesapeake Bay and the seaside tidal creeks and lagoons of
Virginia's Eastern Shore during the years 1995-97. The tagging and
reward system was designed to rely on reporting of marked fish by
commercial and recreational fishermen. Fishery dependent recapture
information (including individual growth rates) is tabulated here to
make it available to people working on summer flounder (Table 2).
There were 261 recaptures (238 by our own research gear), but only
23 of these were at large for more than 40 days (and none of these were
recaptured by research gear), which gives a long-term recapture rate of
0.2%. Except for one fish recovered in a commercial pound net in Tangier
Sound, Va., all long-term recaptures were taken in the recreational
fishery, and 21 were recaptured north of the release areas (Maryland to
Connecticut). Of the mark-recapture studies that have been conducted on
summer flounder, these results represent the lowest overall recapture
rate to date (see Figure 2).
[FIGURE 2 OMITTED]
Significant tag shedding and growth and mortality effects were not
indicated by holding studies. In addition, the absence of returns from
the commercial fishery was expected during the first winter after
tagging because the juveniles were either inaccessible (trawling is not
allowed in state waters) or too small to be retained by the gear (lower
mesh size limits are set to allow escapement of young flounder) or by
the fishermen (most were sub-legal size). Catches have historically been
split 60% and 40% between the commercial and recreational fisheries,
respectively (NEFSC (1)). In light of recreational recaptures from fish
that were at large from 310 to 1,081 days, there is no satisfactory
explanation for the absence of commercially reported recaptures of fish
at large for more than 1 year (save speculation about nonparticipation
by commercial fishermen). Regardless, these results demonstrate that
juvenile summer flounder from Virginia can recruit to New England
estuaries as adults, which lends support to the hypothesis of Rogers and
Van Den Avyle (3) that larvae on the New Jersey shelf occur as juveniles
in more southern estuaries. In addition, there is no evidence to suggest
that juveniles from Virginia are part of the group of summer flounder
that occurs in the inshore areas of North Carolina.
Summary
Currently, summer flounder are managed as a single stock, and a
single study (Jones and Quattro, 1999) that failed to observe a genetic
basis for multiple stocks is cited to justify the approach. However,
there is morphological, meristic, biochemical, and migratory information
that indicates at least two, and possibly three, distinct stocks are
present in the management area. One stock can be defined as the group of
individuals that occupies the sounds and estuaries of North Carolina
during summer and spawns south of Cape Hatteras. A second stock can be
defined as those individuals that occupy inshore and coastal areas north
of Cape Hatteras during the summer and spawn off New Jersey and along
the Virginia-North Carolina coast. These two stocks potentially
over-winter together in the offshore waters of Virginia and North
Carolina, and evidence suggests they can be identified by various
phenotypic traits. In addition, there is evidence of two spawning
aggregations in the northern stock from which offspring intermingle as
juveniles in Virginia estuaries. The spawning aggregation that occurs in
shelf waters off New Jersey is comprised of individuals that move
offshore towards the continental slope on their seasonal migration
cycle. Individuals from the second spawning aggregation that occurs
north of Cape Hatteras appear to stay near shore as they migrate,
following the Virginia-North Carolina coastline, and are primarily
comprised of adults from Virginia waters. The identity of these groups
is less certain than the identity of stocks north and south of Cape
Hatteras. For management applications, studies are warranted that test
for heterogeneity in the productivity and vital rates of northern and
southern stocks of summer flounder. In addition, among several studies
the trend in recapture rate over time (Figure 2), which is also
correlated with latitude, indicates a decline in recent decades. This
suggests that future mark-recapture studies of summer flounder will have
to tag extremely large numbers to expect recapture numbers that are
comparable to earlier studies (before 1980). Alternative methods to
conventional tagging, such as using otolith chemistry as a natural tag
(Thresher, 1999), may be warranted to gain a more complete understanding
of spatial distribution, ontogenetic migrations, and stock identity in
summer flounder. Consideration of stock structure in the management of
summer flounder could have far reaching implications to stock rebuilding
efforts and future policy decisions.
Table 1.--Summer flounder mark-recapture data from the American
Littoral Society's (Sandy Hook, N.J.) recreational-angler-based tagging
program, provided by Gary Shepherd (personal commun.). Recapture
frequencies are given according to release area and the season of
recapture. When latitudinal movements were observed in both directions,
a Chi-square analysis was performed to test the null hypothesis of
equal recapture frequency between north and south directions of
movement.
Latitudinal movement
Release Season
area recaptured North South None Total
Hudson River to Long Island Spring 18 12 32 62
and areas north and east Summer ** 110 56 704 870
Fall 32 23 178 233
Winter 22 28 1 51
Sandy Hook, N.J., Spring * 33 15 19 67
to Cape Henry, Va. Summer ** 167 27 498 692
Fall * 45 23 154 222
Winter ** 18 58 12 88
Coastal areas from Cape Spring 2 2
Henry, Va., to Hatteras Summer 4 4
Inlet, N.C. Fall 1 8 9
Winter 1 1
* Chi-square test p-value<0.01
** Chi-square test p-value<0.001
Table 2.--Recapture data from fishery landed summer flounder (Kraus,
1998). A total of 10,607 juvenile summer flounder were released: 7,228
in Chesapeake Bay at Middlegrounds (M), Kiptopeake (K), and the York
River (Y), and 3,379 at Wachapreague (W) on the seaside of Virginia's
Eastern Shore. Growth rate is calculated as the change in size from
release to capture, or growth in millimeters of total length (TL),
divided by the days at large (DAL).
Release data
Date Location Size (TL)
9/11/95 M (1) 247
9/14/95 M (1) 235
8/8/96 W (1) 182
8/19/96 K (1) 273
8/19/96 K (1) 275
8/21/96 K (1) 232
8/26/96 K (1) 228
9/10/96 W (1) 156
8/5/97 W (2) 171
8/5/97 W (2) 174
8/7/97 W (2) 167
8/14/97 K (2) 217
8/14/97 K (2) 226
8/19/97 K (2) 223
9/7/97 W (2) 130
9/7/97 W (2) 237
9/7/97 W (2) 216
9/9/97 W (2)
9/10/97 W (1) 245
9/10/97 W (1) 185
9/23/97 K (2) 228
9/25/97 Y (2) 214
9/26/97 Y (2) 246
8/7/97 W (2) 183
Capture data
Growth
rate
Date Location DAL Growth (mm/day)
9/1/97 Cape Henlopen, NJ 721 343 0.48
5/24/97 Mattituck, NY 618
6/14/97 Jamaica Bay, NY 310 290 0.94
6/26/97 Shark River, NJ 311 268 0.86
8/22/96 Kiptopeake, VA 3
9/4/98 Niantic Bay, CT 744 536 0.72
8/8/97 Jamaica Bay, NY 347 313 0.90
6/7/99 Moriches Bay, NY 1,000 474 0.47
6/4/99 Moriches Bay, NY 668 360 0.54
8/15/98 Holgate Bay, NJ 375 220 0.59
8/23/98 Wantagh Park, NY 381 443 1.16
6/28/99 Great Bay, NJ 683 314 0.46
7/9/99 Great Bay, NJ 694 404 0.58
9/25/99 Ocean City, MD 767 486 0.63
5/31/99 Chesapeake Bay, VA 631 303 0.48
7/14/99 Staten Is., NY 675 398 0.59
10/24/98 N. Wildwood Beach, NJ 412 335 0.81
8/2/99 Beach Haven Inlet, NJ 692
9/26/98 11 mi. offshore, NJ 381
9/30/98 Atlantic City, NJ 385
7/25/99 Lavallette, NJ 670 382 0.57
5/30/98 Tangier Sound, VA 247
9/1/98 Nassau Co. Park, NY 340
7/23/00 New London, CT 1,081 262 0.24
(1) T-bar tag FF-99 was used during 1995-97.
(2) T-bar tag FD-94 was used during 1997.
Acknowledgments
We dedicate this paper to the memory of our dear friend and vessel
captain, Julian Anthony Penello, for generously providing his knowledge,
assistance, and his own vessel the F/V Anthony Anne, to our disposal to
conduct this research. We acknowledge Joseph C. Desfosse for the
substantial contribution he made to earlier flounder tagging studies,
which prompted the present study, and we would like to thank James P.
Monaghan, Jr. for providing North Carolina Division of Marine Fisheries
tagging data. This project was funded by the Virginia Marine Resources
Commission Recreational Saltwater License Fund, and the first author was
supported by a National Science Foundation grant (OCE-9812069) during
manuscript preparation. This is contribution #2515 of the Virginia
Institute of Marine Science, Gloucester Point, Va.
(1) NEFSC. 2000. Report of the 31st Northeast Regional Stock
Assessment Workshop (31st SAW): Stock Assessment Review Committee (SARC)
consensus summary of assessments. U.S. Dep. Commer., NOAA, Natl. Mar.
Fish. Serv., Northeast Fish. Sci. Cent. Ref. Doc. 00-15, 400 p.
(2) Able, K. W., and S. C. Kaiser. 1994. Synthesis of summer
flounder habitat parameters. U.S. Dep. Commer., NOAA Coastal Ocean
Office, NOAA Coastal Ocean Program Decision Anal. Ser. 1, 68 p., Silver
Spring, Md.
(3) Rogers, S. G., and M. J. Van Den Avyle. 1983. Species profiles:
life histories and environmental requirements of coastal fishes and
invertebrates (South Atlantic)-summer flounder. U.S. Dep. Inter., Fish
Wildl. Serv. FWS/OBS-82/11.15 and U.S. Army Corps Engr. TR EL-82-4, 14
p.
(4) Westman, J. R., and W. C. Neville. 1946. Some studies on the
life history and economics of the fluke, Paralichthys dentatus, of Long
Island waters. A report printed under sponsorship of the Islip Town
Board. Islip, N.Y., 15 p.
(5) Murawski, W. S. 1970. Results of tagging experiments of summer
flounder, Paralichthys dentatus, conducted in New Jersey waters from
1960-1967. N.J. Div. Fish, Game Shellfish., Nacote Creek Res. Sra.,
Misc. Rep. 5M, 25 p.
(6) Monaghan, J. P. 1996. Migration of paralichthid flounders
tagged in North Carolina. N.C. Div. Mar. Fish., Completion Rep. Grant
F-43, 44 p.
(7) Hamer, P. E., and F. E. Lux. 1962. Marking experiments on fluke
(Paralichthys dentatus) in 1961. Minutes of the 21st meeting of the
North Atlantic Section, Atlantic States Marine Fisheries Committee,
Dinkier-Plaza Hotel, Atlanta, Georgia, September 27, 1962. App. MA-6.
(8) Lux, F. E., and F. E. Nichy. 1981. Movements of tagged summer
flounder, Paralichthys dentatus, off southern New England. In NEFC Lab
Ref. Doc. 80-34. U.S. Dep. Commer., NOAA, Natl. Mar. Fish. Serv., Woods
Hole Lab., Mass.
(9) Gillikin, J. W., Jr. Unpubl. manuscr, cited in, K. W Able. and
S. C. Kaiser. 1994. Synthesis of summer flounder habitat parameters.
NOAA Coastal Ocean Office, Silver Spring, Md., NOAA Coastal Ocean
Program Decision Anal. Ser. 1, 68 p.
(10) Ross, S. W., J. H. Hawkins, D. A. Devries, C. H. Harvell, and
R. C. Harris, Jr. 1982. North Carolina estuarine finfish management
program. N.C. Dep. Nat. Resour. Community Develop., Div. Mar. Fish.,
Completion Rep. Proj. 2-372-R, 171 p. This footnote is only referenced
on Figure 2.
Literature Cited
Able, K. W., R. E. Matheson, W. W. Morse, M. P. Fahay, and G.
Shepherd. 1990. Patterns of summer flounder, Paralichtys dentatus, early
life history in the mid-Atlantic Bight and New Jersey estuaries. Fish.
Bull. 88:1-12.
Burke, J. S., J. M. Miller, and D. E. Hoss. 1991. Immigration and
settlement pattern of Paralichthys dentatus and P. lethostigma in an
estuarine nursery ground, North Carolina, U.S.A. Neth. J. Sea Res.
27:393-405.
--, J. P. Monaghan, and S. Yokoyama. 2000. Efforts to understand
stock structure of summer flounder (Paralichthys dentatus) in North
Carolina, USA. Neth. J. Sea Res. 44:111-122.
Delaney, G. R. 1986. Morphometric and meristic stock identification
of summer flounder, Paralichthys dentatus. Coll, William and Mary,
Williamsburg, Va, M.A. thesis, 47 p.
Dery, L. M. 1981. Post workshop age and growth study of young
summer flounder. In R. W. Smith, L. M. Dery, P. G. Scarlett, and A.
Jearld, Jr. (Editors), Proceedings of the summer flounder (Paralichthys
dentatus) age and growth workshop, 20 21 May 1980, Woods Hole, MA, p.
7-11. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NEC-I 1, 30 p.
Desfosse, J. C. 1995. Movements and ecology of summer flounder,
Paralichthys dentatus, tagged in the southern Mid-Atlantic Bight. Coll.
William and Mary, Gloucester Point, Va., Ph.D. dissert., 187 p.
Fogarty, M. J., G. DeLaney, J. J. W. Gillikin, J. C. Poole, D. E.
Ralph, P. G. Scarlett, R. W. Smith, and S. J. Wilk. 1983. Stock
discrimination of summer flounder (Paralichthys dentatus) in the Middle
and South Atlantic Bights: results of a workshop. Woods Hole,
Massachusetts. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/NEC-18, 8 p.
Ginsburg, I. 1952. Flounder of the genus Paralichthys and related
genera in American waters. U.S. Fish Wildl. Serv., Fish. Bull. 52:
267-351.
Hilborn, R., and C. J. Walters. 1992. Quantitative fisheries stock
assessment: choice, dynamics and uncertainty. Chapman and Hall, N.Y.,
570 p.
Jones, W. J., and J. M. Quattro. 1999. Genetic structure of summer
flounder (Paralichthys dentatus) populations north and south of Cape
Hatteras. Mar. Biol. 133(1):129-135.
Kraus, R. T. 1998. Tagging and habitat utilization of juvenile
summer flounder, Paralichthys dentatus. M.S. thesis. Coll. William and
Mary, Williamsburg, Va., 148 p.
Malloy, K. D., and T. E. Targett. 1991. Feeding, growth and
survival of juvenile summer flounder Paralichthys dentatus: experimental
analysis of the effects of temperature and salinity. Mar. Ecol. Prog.
Ser. 72:213-223.
-- and --. 1994. Effects of ration limitation and low temperature
on growth, biochemical condition, and survival of juvenile summer
flounder from two Atlantic coast nurseries. Trans. Am. Fish. Soc. 123:
182-193.
NMFS. 1999. Our living oceans. Report on the status of U.S. living
marine resources, 1999. U.S. Dep. Commer., NOAA Tech. Memo.
NMFS-F/SPO-41,301 p.
Norcross, B. L., and D. M. Wyanski. 1993. Inter-annual variation in
the recruitment pattern and abundance of age-0 summer flounder,
Paralichthys dentatus, in Virginia estuaries. Fish. Bull. 92:591-598.
Poole, J. C. 1962. The fluke population of Great South Bay in
relation to the sport fishery. N.Y. Fish Game J. 9(2):93-117.
Powell, A. B. 1982. Annulus formation on otoliths and growth of
young summer flounder, Paralichthys dentatus, from Pamlico Sound, N.C.
Trans. Am. Fish. Soc. 111:688-693.
Ryman, N., and R. Utter. 1987. Population genetics and fishery
management. Univ. Wash. Press, Seattle, 420 p.
Smith, S. M., and F. C. Daiber. 1977. Biology of the summer
flounder, Paralichthys dentatus, in Delaware Bay. Fish. Bull.
71:527-548.
Smith, W. G. 1973. The distribution of summer flounder,
Paralichthys dentatus, eggs and larvae on the continental shelf between
Cape Cod and Cape Lookout, 1965-66. Fish. Bull. 71:527-548.
Szedlmayer, S. T., K. W. Able, and R. A. Roun-tree. 1992. Growth
and ,temperature-induced mortality of young-of-the-year summer flounder
(Paralichthys dentatus) in southern New Jersey. Copeia 1:120-128.
Thresher, R. E. 1999. Elemental compositions of otoliths as a stock
delineator in fishes. Fish. Res. (Amst.) 43:165-204.
Wilk, S. J., W. G. Smith, D. E. Ralph, and J. Sibunka. 1980.
Population structure of summer flounder between New York and Florida
based on linear discriminant analysis. Trans. Am. Fish. Soc.
109:265-271.
Van Housen, G. 1984. Electrophoretic stock identification of summer
flounder, Paralichthys dentatus. Coll. William and Mary, Williamsburg,
Va., M.A. thesis, 66 p.
Richard T Kraus is with the University of Maryland Center for
Environmental Science, One Williams Street, P.O. Box 38, Solomons, MD
20688 [e-mail: kraus@cbl.umces.edu]. John A. Musick is with the College
of William and Mary, School of Marine Science, Virginia Institute of
Marine Science, P.O. Box 1346, Gloucester Point, VA 23062. Views or
opinions expressed or implied are those of the authors and do not
necessarily reflect the position of the National Marine Fisheries
Service, NOAA.