Lithuanian case study of masonry buildings from the soviet period.
Brauers, Willem Karel M. ; Kracka, Modestas ; Zavadskas, Edmundas Kazimieras 等
Annex A
Table 6. MOORA applied on 5 roof alternatives with 7 conditions
6a. Matrix of responses of alternatives on objectives: ([x.sub.ij])
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
max min min min
roof 1 1.73 144.51 74 646.64 16.13
roof 2 3.08 150.29 77 632.30 9.18
roof 3 5.78 158.96 82 110.79 4.73
roof 4 6.25 170.52 88 082.11 4.45
roof 5 7.14 179.19 92 560.59 3.89
[x.sub.5] [x.sub.6] [x.sub.7]
max max min
roof 1 57.56 17 267.42 4.32
roof 2 64.51 19 352.35 4.01
roof 3 68.96 20 687.31 3.97
roof 4 69.24 20 771.31 4.24
roof 5 69.80 20 939.30 4.42
6b. Sum of squares and their square roots
[x.sub.1] [x.sub.2] [x.sub.3]
roof 1 2.98 20 883.14 5 572.12 x [10.sup.6]
roof 2 9.48 22 587.08 6 026.77 x [10.sup.6]
roof 3 33.41 25 268.28 6 742.18 x [10.sup.6]
roof 4 39.06 29 077.07 7 758.45 x [10.sup.6]
roof 5 51.02 32 109.06 8 567.46 x [10.sup.6]
Sum of squares. 135.95 129 924.63 34 666.99 x [10.sup.6]
Square roots 11.66 360.45 186190.755
[x.sub.4] [x.sub.6] [x.sub.7]
roof 1 260.18 3 313.15 298.16 x [10.sup.6]
roof 2 84.27 4 161.54 374.51 x [10.sup.6]
roof 3 22.37 4 755.48 427.96 x [10.sup.6]
roof 4 19.80 4 794.18 431.45 x [10.sup.6]
roof 5 15.13 4 872.04 438.45 x [10.sup.6]
Sum of squares. 401.76 21 896.39 1970.54 x [10.sup.6]
Square roots 20.044 147.974 44390.81
[x.sub.8]
roof 1 18.69
roof 2 16.09
roof 3 15.75
roof 4 17.98
roof 5 19.54
Sum of squares. 88.06
Square roots 9.38
6c. Objectives divided by their square roots and MOORA
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
roof 1 0.148 0.401 0.401 0.805 0.389
roof 2 0.264 0.417 0.417 0.458 0.436
roof 3 0.496 0.441 0.441 0.236 0.466
roof 4 0.536 0.473 0.473 0.222 0.468
roof 5 0.613 0.497 0.497 0.194 0.472
[x.sub.6] [x.sub.7] total rank
roof 1 0.389 0.461 -1.141 5
roof 2 0.436 0.427 -0.584 4
roof 3 0.466 0.423 -0.113 2
roof 4 0.468 0.452 -0.148 3
roof 5 0.472 0.471 -0.103 1
6d. Reference point theory with ratios: coordinates of the reference
point equal to the maximal objective values
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
[r.sub.i] 0.613 0.401 0.401 0.194
[x.sub.5] [x.sub.6] [x.sub.7]
[r.sub.i] 0.472 0.472 0.423
6e. Reference point theory: deviations from the reference point
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
roof 1 0.464 0.000 0.000 0.611 0.083
roof 2 0.349 0.016 0.016 0.264 0.036
roof 3 0.117 0.040 0.040 0.042 0.006
roof 4 0.077 0.072 0.072 0.028 0.004
roof 5 0.000 0.096 0.096 0.000 0.000
[x.sub.6] [x.sub.7] max Rank
min
roof 1 0.083 0.038 0.611 5
roof 2 0.036 0.005 0.349 4
roof 3 0.006 0.000 0.117 3
roof 4 0.004 0.029 0.0766 1
roof 5 0.000 0.048 0.096 2
Table 6'. The full Multiplicative Form
A B C D E
max min C=A:B min E=C:D
roof 1 1.73 144.51 0.012 74'646.64 1.6011 x [10.sup.-7]
roof 2 3.08 150.29 0.021 77'632.30 2.6372 x [10.sup.-7]
roof 3 5.78 158.96 0.036 82'110.79 4.4286 x [10.sup.-7]
roof 4 6.25 170.52 0.037 88'082.11 4.1612 x [10.sup.-7]
roof 5 7.14 179.19 0.040 92'560.59 4.3066 x [10.sup.-7]
F G H I
min G=E:F max I=G x H
roof 1 16.13 9.926 x [10.sup.-9] 57.56 5.71 x [10.sup.-7]
roof 2 9.18 2.872 x [10.sup.-8] 64.51 1.85 x [10.sup.-6]
roof 3 4.73 9.362 x [10.sup.-8] 68.96 6.46 x [10.sup.-6]
roof 4 4.45 9.351 x [10.sup.-8] 69.24 6.47 x [10.sup.-6]
roof 5 3.89 1.107 x [10.sup.-7] 69.80 7.73 x [10.sup.-6]
J K L
max K=I x J min
roof 1 17 267.42 0.99 x [10.sup.-3] 4.32
roof 2 19 352.35 3.59 x [10.sup.-3] 4.01
roof 3 20 687.31 13.36 x [10.sup.-3] 3.97
roof 4 20 771.31 13.45 x [10.sup.-3] 4.24
roof 5 20 939.30 16.18 x [10.sup.-3] 4.42
M Result Project
M=K:L
roof 1 2.30 x [10.sup.-3] 5 roof 1
roof 2 8.90 x [10.sup.-3] 4 roof 2
roof 3 33.70 x [10.sup.-3] 2 roof 3
roof 4 31.70 x [10.sup.-3] 3 roof 4
roof 5 36.60 x [10.sup.-3] 1 roof 5
Annex B
Table 7. MOORA applied on 5 ceiling alternatives with 7 conditions
7a. Matrix of responses of alternatives on objectives: ([x.sub.i,j])
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
max min min min
ceiling 1 1.95 57.80 29 856.59 8.13
ceiling 2 3.34 65.00 33 575.75 5.49
ceiling 3 4.00 75.00 38 741.25 4.73
ceiling 4 4.700 90.00 46 489.50 4.08
ceiling 5 6.061 104.05 53 747.03 3.39
[x.sub.5] [x.sub.6] [x.sub.7]
max max min
ceiling 1 6.71 2 012.93 14.83
ceiling 2 9.35 2 804.91 11.97
ceiling 3 10.11 3 032.90 12.77
ceiling 4 10.76 3 227.89 14.40
ceiling 5 11.45 3 434.89 15.65
7b. Sum of squares and their square roots
[x.sub.1] [x.sub.2] [x.sub.3]
ceiling 1 3.82 3 340.84 891.42 x [10.sup.6]
ceiling 2 11.19 4225.00 1 127.33 x [10.sup.6]
ceiling 3 16.00 5625.00 1 500.88 x [10.sup.6]
ceiling 4 22.04 8100.00 2 161.27 x [10.sup.6]
ceiling 5 36.73 10 826.40 2 888.74 x [10.sup.6]
Sum of squares. 89.77 32 117.243 8 569.65 x [10.sup.6]
Square roots 9.475 179.213 92 572.393
[x.sub.4] [x.sub.5] [x.sub.6] [x.sub.7]
ceiling 1 66.097 45.02 4 051898.86 220.00
ceiling 2 30.140 87.42 7 867500.47 143.29
ceiling 3 22.373 102.21 9 198475.74 163.17
ceiling 4 16.646 115.78 10 419289.35 207.43
ceiling 5 11.492 131.10 11 798438.40 244.84
Sum of squares. 146.748 481.54 43 335602.82 978.73
Square roots 12.114 21.94 6 582.98 31.29
7c. Objectives divided by their square roots and MOORA
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
ceiling 1 0.206 0.323 0.323 0.671 0.306
ceiling 2 0.353 0.363 0.363 0.453 0.426
ceiling 3 0.422 0.418 0.418 0.390 0.461
ceiling 4 0.496 0.502 0.502 0.337 0.490
ceiling 5 0.640 0.581 0.581 0.280 0.522
[x.sub.6] [x.sub.7] total rank
ceiling 1 0.306 0.474 -0.973 5
ceiling 2 0.426 0.383 -0.356 4
ceiling 3 0.461 0.408 -0.292 3
ceiling 4 0.490 0.460 -0.325 2
ceiling 5 0.522 0.500 -0.258 1
7d. Reference point theory with ratios: coordinates of the reference
point equal to the maximal objective values
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
[r.sib.i] 0.640 0.323 0.323 0.280
[x.sub.5] [x.sub.6] [x.sub.7]
[r.sib.i] 0.522 0.522 0.383
7e. Reference point theory: deviations from the reference point
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
ceiling 1 0.434 0.000 0.000 0.391 0.216
ceiling 2 0.287 0.040 0.040 0.173 0.096
ceiling 3 0.217 0.096 0.096 0.111 0.061
ceiling 4 0.144 0.180 0.180 0.057 0.031
ceiling 5 0.000 0.258 0.258 0.000 0.000
Rank
[x.sub.6] [x.sub.7] max min
ceiling 1 0.216 0.091 0.434 5
ceiling 2 0.096 0.000 0.287 4
ceiling 3 0.061 0.026 0.218 2
ceiling 4 0.031 0.078 0.180 1
ceiling 5 0.000 0.118 0.258 3
Table 7'. The full Multiplicative Form
A B C D E
max min C=A:B min E=C:D
ceiling 1 1.95 57.80 0.034 29 856.59 1.132 x [10.sup.-6]
ceiling 2 3.34 65.00 0.052 33 575.75 1.533 x [10.sup.-6]
ceiling 3 4.00 75.00 0.053 38 741.25 1.377 x [10.sup.-6]
ceiling 4 4.70 90.00 0.052 46 489.50 1.122 x [10.sup.-6]
ceiling 5 6.06 104.05 0.058 53 747.03 1.084 x [10.sup.-6]
F G H I
min G=E:F max I=G x H
ceiling 1 8.13 1.392 x [10.sup.-7] 6.71 9.34 x [10.sup.-7]
ceiling 2 5.49 2.791 x [10.sup.-7] 9.35 2.61 x [10.sup.-6]
ceiling 3 4.73 2.911 x [10.sup.-7] 10.11 2.94 x [10.sup.-6]
ceiling 4 4.08 2.750 x [10.sup.-7] 10.76 2.96 x [10.sup.-6]
ceiling 5 3.39 3.197 x [10.sup.-7] 11.45 3.66 x [10.sup.-6]
J K L
max K=I-J min
ceiling 1 2 012.93 0.19 x [10.sup.-2] 14.83
ceiling 2 2 804.91 0.73 x [10.sup.-2] 11.97
ceiling 3 3 032.90 0.89 x [10.sup.-2] 12.77
ceiling 4 3 227.89 0.96 x [10.sup.-2] 14.40
ceiling 5 3 434.89 0.13 x [10.sup.-2] 15.65
M
M=K:L Result Project
ceiling 1 0.127 x [10.sup.-3] 5 ceiling 1
ceiling 2 0.612 x [10.sup.-3] 4 ceiling 2
ceiling 3 0.699 x [10.sup.-3] 2 ceiling 3
ceiling 4 0.663 x [10.sup.-3] 3 ceiling 4
ceiling 5 0.804 x [10.sup.-3] 1 ceiling 5
Table 8. MOORA applied on 5 windows alternatives with 7 conditions
8a. Matrix of responses of alternatives on objectives: ([x.sub.i,j])
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
max min min min
windows 1 0.588 202.31 102 656.14 46.44
windows 2 0.625 216.76 55 989.11 55.77
windows 3 0.625 216.76 109 988.36 43.71
windows 4 0.833 245.66 63 453.98 50.21
windows 5 0.833 245.66 124 652.80 32.78
[x.sub.5] [x.sub.6] [x.sub.7]
max max min
windows 1 69.14 20 741.31 4.95
windows 2 59.81 17 942.40 3.12
windows 3 71.87 21 560.28 5.10
windows 4 65.37 19 610.35 3.24
windows 5 82.8 24 839.17 5.02
8b. Sum of squares and their square roots
[x.sub.1] [x.sub.2] [x.sub.3]
windows 1 0.35 40 929.34 10 538.28 x [10.sup.6]
windows 2 0.39 46 984.90 3 134.78 x [10.sup.6]
windows 3 0.39 46 984.90 12 097.44 x [10.sup.6]
windows 4 0.69 60 348.84 4 026.41 x [10.sup.6]
windows 5 0.69 60348.84 15 538.32 x [10.sup.6]
Sum of squares. 2.52 255 596.80 45 335.23 x [10.sup.6]
Square roots 1.59 505.57 212 920.71
[x.sub.4] [x.sub.5] [x.sub.6]
windows 1 2 156.67 4 780.34 430.20 x [10.sup.6]
windows 2 3 110.29 3 577.24 321.93 x [10.sup.6]
windows 3 1 910.56 5 165.30 464.85 x [10.sup.6]
windows 4 2 521.04 4 273.24 384.57 x [10.sup.6]
windows 5 1 074.53 6 855.84 616.99 x [10.sup.6]
Sum of squares. 10 773.10 24 651.95 2 218.52 x [10.sup.6]
Square roots 103.79 157.01 47 101.25
[x.sub.7]
windows 1 24.50
windows 2 9.74
windows 3 26.02
windows 4 10.47
windows 5 25.18
Sum of squares. 95.91
Square roots 9.79
8c. Objectives divided by their square roots and MOORA
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
windows 1 0.371 0.400 0.482 0.447 0.440
windows 2 0.394 0.429 0.263 0.537 0.381
windows 3 0.394 0.429 0.517 0.421 0.458
windows 4 0.525 0.486 0.298 0.484 0.416
windows 5 0.525 0.486 0.585 0.316 0.527
[x.sub.6] [x.sub.7] total rank
windows 1 0.440 0.505 -0.584 5
windows 2 0.381 0.319 -0.392 3
windows 3 0.458 0.521 -0.578 4
windows 4 0.416 0.330 -0.240 1
windows 5 0.527 0.512 -0.320 2
8d. Reference point theory with ratios: coordinates of the reference
point equal to the maximal objective values
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
[r.sub.i] 0.525 0.400 0.263 0.316
[x.sub.5] [x.sub.6] [x.sub.7]
[r.sub.i] 0.527 0.527 0.319
8e. Reference point theory: deviations from the reference point
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
windows 1 0.155 0.000 0.219 0.132 0.087
windows 2 0.131 0.029 0.000 0.221 0.146
windows 3 0.131 0.029 0.254 0.105 0.070
windows 4 0.000 0.086 0.035 0.168 0.111
windows 5 0.000 0.086 0.322 0.000 0.000
Rank
[x.sub.6] [x.sub.7] max min
windows 1 0.087 0.187 0.219 2
windows 2 0.146 0.000 0.221 3
windows 3 0.070 0.202 0.254 4
windows 4 0.111 0.012 0.168 1
windows 5 0.000 0.194 0.322 5
Table 8'. The full Multiplicative Form
A B C D
max min C=A:B min
windows 1 0.588 202.31 0.0029 102 656.14
windows 2 0.625 216.76 0.0029 55 989.11
windows 3 0.625 216.76 0.0029 109 988.36
windows 4 0.833 245.66 0.0034 63 453.98
windows 5 0.833 245.66 0.0034 124 652.80
E F G H
E=C:D min G=E:F max
windows 1 2.83 x [10.sup.-8] 46.44 6.1 x [10.sup.-10] 69.14
windows 2 5.15 x [10.sup.-8] 55.77 9.23 x [10.sup.-10] 59.81
windows 3 2.62 x [10.sup.-8] 43.71 6 x [10.sup.-10] 71.87
windows 4 5.35 x [10.sup.-8] 50.21 1.06 x [10.sup.-10] 65.37
windows 5 2.72 x [10.sup.-8] 32.78 8.3 x [10.sup.-10] 82.80
I J K
I=G-H max K=I x J
windows 1 4.217 x [10.sup.-8] 20 741.31 0.09 x [10.sup.2]
windows 2 5.523 x [10.sup.-8] 17 942.40 0.10 x [10.sup.2]
windows 3 4.31 x [10.sup.-8] 21 560.28 0.09 x [10.sup.2]
windows 4 6.96 x [10.sup.-8] 19 610.35 0.14 x [10.sup.2]
windows 5 6.87 x [10.sup.-8] 24 839.17 0.17 x [10.sup.2]
L M Project
min M=K:L Result
windows 1 4.95 0.177 x [10.sup.-3] 5 windows 1
windows 2 3.12 0.318 x [10.sup.-3] 3 windows 2
windows 3 5.10 0.182 x [10.sup.-3] 4 windows 3
windows 4 3.24 0.422 x [10.sup.-3] 1 windows 4
windows 5 5.02 0.340 x [10.sup.-3] 2 windows 5
Table 1. Heat losses through existing partitions
No. Heat losses Calculated values
(kWh/[m.sup.2]
per year)
1 Heat losses through the walls 90.21
2 Heat losses through the roof 73.69
3 Heat losses through the insulated cellar 14.84
ceilings
4 Heat losses through the windows 68.29
5 Heat losses through the external doors 0.36
6 Heat losses through the bearer thermal 32.40
bridges
7 Heat losses through opening external doors 1.23
8 Energy consumption for natural ventilation 24.04
of the building
9 Heat losses through the external air 75.64
infiltration
10 Heat inflows in the building -28.76
11 Internal heat divergence in the building -6.34
12 Total energy consumption in the building 345.6
(without the assessment of the efficiency
of the heating system)
Table 2. Heating energy consumptions, costs and payback periods of the
main partitions
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
max min min min
1 wall 1 2.10 145.00 182 700.00 32.56
wall 2 3.45 150.00 189 000.00 19.67
wall 3 4.76 160.00 201 600.00 14.24
wall 4 5.00 180.00 226 800.00 13.57
wall 5 5.99 190.00 239 400.00 11.53
2 roof 1 1.73 144.51 74 646.64 16.13
roof 2 3.08 150.29 77 632.30 9.18
roof 3 5.78 158.96 82 110.79 4.73
roof 4 6.25 170.52 88 082.11 4.45
roof 5 7.14 179.19 92 560.59 3.89
3 ceiling 1 1.95 57.80 29 856.59 8.13
ceiling 2 3.34 66.47 34 335.08 5.49
ceiling 3 4.00 72.25 37 320.74 4.73
ceiling 4 4.70 89.6 46 282.88 4.08
ceiling 5 6.06 104.05 53 747.03 3.39
4 windows 1 0.59 202.31 102 656.14 46.44
windows 2 0.63 216.76 55 989.11 55.77
windows 3 0.63 216.76 109 988.36 43.71
windows 4 0.83 245.66 63 453.98 50.21
windows 5 0.83 245.66 124 652.80 32.78
[x.sub.5] [x.sub.6] [x.sub.7]
max max min
1 wall 1 57.65 17 294.42 10.56
wall 2 70.54 21 161.29 8.93
wall 3 75.97 22 790.24 8.85
wall 4 76.64 22 991.23 9.86
wall 5 78.68 23 603.21 10.14
2 roof 1 57.56 17 267.42 4.32
roof 2 64.51 19 352.35 4.01
roof 3 68.96 20 687.31 3.97
roof 4 69.24 20 771.31 4.24
roof 5 69.80 20 939.30 4.42
3 ceiling 1 6.710 2 012.93 14.83
ceiling 2 9.35 2 804.91 12.24
ceiling 3 10.11 3 032.90 12.31
ceiling 4 10.76 3 227.89 14.34
ceiling 5 11.45 3 434.89 15.65
4 windows 1 69.14 20 741.31 4.95
windows 2 59.81 17 942.40 3.12
windows 3 71.87 21 560.28 5.10
windows 4 65.37 19 610.35 3.24
windows 5 82.80 24 839.17 5.02
Table 3. MOORA applied on 5 wall alternatives with 7 conditions
3a. Matrix of responses of alternatives on objectives: ([x.sub.ij])
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
max min min min
wall 1 2.10 145 182 700.00 32.56
wall 2 3.45 150 189 000.00 19.67
wall 3 4.76 160 201 600.00 14.24
wall 4 5.00 180 226 800.00 13.57
wall 5 5.99 190 239 400.00 11.53
[x.sub.5] [x.sub.6] [x.sub.7]
max max min
wall 1 57.65 17 294.42 10.56
wall 2 70.54 21 161.29 8.93
wall 3 75.97 22 790.24 8.85
wall 4 76.64 22 991.23 9.86
wall 5 78.68 23 603.21 10.14
3b. Sum of squares and their square roots
[x.sub.1] [x.sub.2] [x.sub.3]
wall 1 4.41 21025 33 379.29 x [10.sup.6]
wall 2 11.89 22500 35 721 x [10.sup.6]
wall 3 22.68 25600 40 642.56 x [10.sup.6]
wall 4 25.00 32400 51 438.24 x [10.sup.6]
wall 5 35.86 36100 57 312.36 x [10.sup.6]
Sum of squares. 99.84 137 625.00 218 493450 x [10.sup.6]
Square roots 9.99 370.98 467 432.82
[x.sub.4] [x.sub.5]
wall 1 1 060.15 3 323.52
wall 2 386.91 4 975.89
wall 3 202.78 5 771.44
wall 4 184.15 5 873.69
wall 5 132.94 6 190.54
Sum of squares. 1 966.93 26 135.09
Square roots 44.35 161.66
[x.sub.6] [x.sub.7]
wall 1 2 990.97 x [10.sup.5] 111.60
wall 2 4 478.00 x [10.sup.5] 79.77
wall 3 5 193.950 x [10.sup.5] 78.25
wall 4 5 285.96 x [10.sup.5] 97.31
wall 5 5 571.11 x [10.sup.5] 102.87
Sum of squares. 23 520.01 x [10.sup.5] 469.81
Square roots 48 497.43 21.68
3 c. Objectives divided by their square roots and MOORA
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
wall 1 0.210 0.391 0.391 0.734 0.357
wall 2 0.345 0.404 0.404 0.444 0.436
wall 3 0.477 0.431 0.431 0.321 0.470
wall 4 0.500 0.485 0.485 0.306 0.474
wall 5 0.599 0.512 0.512 0.260 0.487
[x.sub.6] [x.sub.7] total Rank
max
wall 1 0.357 0.487 -1.080 5
wall 2 0.436 0.412 -0.446 4
wall 3 0.470 0.408 -0.175 1
wall 4 0.474 0.455 -0.283 3
wall 5 0.487 0.468 -0.180 2
3d. Reference point theory with ratios: coordinates of the reference
point equal to the maximal objective values
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4]
[r.sub.i] 0.599 0.391 0.391 0.260
[x.sub.5] [x.sub.6] [x.sub.7]
[r.sub.i] 0.487 0.487 0.408
3e. Reference point theory: deviations from the reference point
[x.sub.1] [x.sub.2] [x.sub.3] [x.sub.4] [x.sub.5]
wall 1 0.389 0.000 0.000 0.474 0.130
wall 2 0.254 0.013 0.013 0.184 0.050
wall 3 0.123 0.040 0.040 0.061 0.017
wall 4 0.099 0.094 0.094 0.046 0.013
wall 5 0.000 0.121 0.121 0.000 0.000
[x.sub.6] [x.sub.7] max Rank
min
wall 1 0.130 0.079 0.474 5
wall 2 0.050 0.004 0.254 4
wall 3 0.017 0.000 0.123 3
wall 4 0.013 0.047 0.099 1
wall 5 0.000 0.060 0.121 2
Table 4. The Full Multiplicative Form
A B C D E
max min C=A:B min E=C:D
wall 1 2.10 145 0.01 182 700.00 7.93 x [10.sup.-8]
wall 2 3.45 150 0.02 189 000.00 1.21 x [10.sup.-7]
wall 3 4.76 160 0.03 201 600.00 1.47 x [10.sup.-7]
wall 4 5.00 180 0.03 226 800.00 1.22 x [10.sup.-7]
wall 5 5.99 190 0.03 239 400.00 1.31 x [10.sup.-7]
F G H I
min G=E:F max I=G x H
wall 1 32.56 2.44 x [10.sup.-9] 57.65 1.4 x [10.sup.-7]
wall 2 19.67 6.18 x [10.sup.-9] 70.54 4.36 x [10.sup.-7]
wall 3 14.24 1.04 x [10.sup.-8] 75.97 7.88 x [10.sup.-7]
wall 4 13.57 9.02 x [10.sup.-9] 76.64 6.92 x [10.sup.-7]
wall 5 11.53 1.14 x [10.sup.-9] 78.68 8.98 x [10.sup.-7]
J K L
max K=I x J min
wall 1 17 294.42 0.24 x [10.sup.-2] 10.56
wall 2 21 161.29 0.92 x [10.sup.-2] 8.93
wall 3 22 790.24 1.79 x [10.sup.-2] 8.85
wall 4 22 991.23 1.59 x [10.sup.-2] 9.86
wall 5 23 603.21 2.12 x [10.sup.-2] 10.14
M Result Project
M=K:L
wall 1 0.23 x [10.sup.-3] 5 wall 1
wall 2 1.03 x [10.sup.-3] 4 wall 2
wall 3 2.03 x [10.sup.-3] 2 wall 3
wall 4 1.61 x [10.sup.-3] 3 wall 4
wall 5 2.09 x [10.sup.-3] 1 wall 5
Table 5. MULTIMOORA as a consequence of the MOORA method and of the
Full Multiplicative Form
MOORA Full MULTIMOORA
Multiplicative
Ratio Reference Form
system point Rank
1 wall 1 5 5 5 5
wall 2 4 4 4 4
wall 3 1 3 2 2
wall 4 3 1 3 3
wall 5 2 2 1 1
2 roof 1 5 5 5 5
roof 2 4 4 4 4
roof 3 2 3 2 2
roof 4 3 1 3 3
roof 5 1 2 1 1
3 ceiling 1 5 5 5 5
ceiling 2 4 4 4 4
ceiling 3 2 2 2 2
ceiling 4 3 1 3 3
ceiling 5 1 3 1 1
4 windows 1 5 2 5 5
windows 2 3 3 3 3
windows 3 4 4 4 4
windows 4 1 1 1 1
windows 5 2 5 2 2