首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Comparing housing booms and mortgage supply in the major OECD countries.
  • 作者:Armstrong, Angus ; Davis, E. Philip
  • 期刊名称:National Institute Economic Review
  • 印刷版ISSN:0027-9501
  • 出版年度:2014
  • 期号:November
  • 语种:English
  • 出版社:National Institute of Economic and Social Research
  • 摘要:The house price and lending boom of the 2000s is widely considered to be not only a unique event but also the main cause of the global financial crisis that began in 2007, leading in turn to the biggest losses in financial wealth for generations (IMF, 2008a; Kemme and Roy, 2012). Typical of current thinking is a speech earlier this year by Min Zhu, Deputy Managing Director of the IMF, who said "housing is an essential sector of the economy but also one that has been the source of vulnerabilities and crises" (our italics). However, looking to the past, we find a similar global housing boom in the late 1980s which did not lead directly to a global systemic banking crisis there were widespread banking difficulties in the early 1990s but these were linked mainly to commercial property exposures (Davis, 1995). This raises the question whether the received wisdom is incorrect, and other factors than the housing boom caused the crisis, while macroprudential policy is wrongly targeted at the control of house prices and lending per se.
  • 关键词:Banks (Finance);Dwellings;Housing;Mortgages

Comparing housing booms and mortgage supply in the major OECD countries.


Armstrong, Angus ; Davis, E. Philip


Introduction

The house price and lending boom of the 2000s is widely considered to be not only a unique event but also the main cause of the global financial crisis that began in 2007, leading in turn to the biggest losses in financial wealth for generations (IMF, 2008a; Kemme and Roy, 2012). Typical of current thinking is a speech earlier this year by Min Zhu, Deputy Managing Director of the IMF, who said "housing is an essential sector of the economy but also one that has been the source of vulnerabilities and crises" (our italics). However, looking to the past, we find a similar global housing boom in the late 1980s which did not lead directly to a global systemic banking crisis there were widespread banking difficulties in the early 1990s but these were linked mainly to commercial property exposures (Davis, 1995). This raises the question whether the received wisdom is incorrect, and other factors than the housing boom caused the crisis, while macroprudential policy is wrongly targeted at the control of house prices and lending per se.

Accordingly, in this paper we compare the cycles and assess the evolution in house price determination in major OECD countries over the past decades to see whether the current cycle is unique. A key point in this context is that housing differs from other asset markets in that informational reasons, transaction costs, credit rationing and supply side factors help explain serial correlation and mean reversion in house prices which may in turn differ across countries and time but may also lead to common patterns in global markets (Capozza et al., 2002).

In terms of a comparison, we may ask whether the booms were similar in key features apart from rising house prices, or were there major contrasts? We explore these questions via a statistical comparison of roughly-defined boom periods as well as the 'aftermath' of the booms. (1) We go on to assess whether there have been changes in the relationship of house prices to their determinants more generally in the two main housing cycles since liberalisation, which in most OECD countries happened in the 1980s. (2) Furthermore, it is a stylised fact that mortgage debt should not have a direct influence on house prices in a liberalised financial market such as characterised both the recent boom periods (since mortgage debt is then demand-determined). We examine econometrically whether this was the case for the booms in question. Finally we consider other unique factors that may distinguish the recent boom better than house price and lending dynamics per se.

The paper is structured as follows. In the first section, we compare housing booms and assess in particular the changes in real house prices and their main determinants, notably real personal disposable income (RPDI) and real housing debt in fifteen major OECD countries. In the second section we briefly introduce work underlying house price equations before providing a specification for house price determination (similar to Davis, Fic and Karim, 2011) in the third section and results in the fourth. In the fifth section we look specifically at results for the impact of credit supply on house prices, which is omitted by most extant specifications and in the sixth we look at potential structural and conjunctural factors that may distinguish the booms. The final section concludes.

I. Comparing global housing cycles

We have quarterly data on house prices and other relevant macroeconomic and financial variables covering both boom periods for fifteen OECD countries, drawn from the BIS database. We define the booms roughly as five year periods from 1985Q1-1989Q4 and 2002Q1-2006Q4, in line with Dokko et al. (2011) of the Fed and incorporating the periods that Igan and Foungini (2012) of the IMF show for country-by country specific data on house price cycles. (3) We also define an 'aftermath' period for each boom which is the following five years, namely 1990Q1-94Q4 and 2007Q1-11Q4. It is in these periods that output typically remained subdued and banking crises took place in certain countries, (4) and falls in house prices tended to occur with tight credit markets.

Our analysis of the booms and aftermath begins with table 1, which shows the relevant changes in real house prices over the periods together with real personal disposable income (a key determinant of house prices), the stock of real household sector debt, (5) nominal house prices and real gross financial wealth.

The table shows, first, that not all countries participated in both the first and the second global house price boom. Using a rough benchmark of 10 per cent rise in real house prices to qualify a boom, Japan and Austria only experienced significant rises in house prices in the earlier period, while Denmark saw large rises only in the later period. Germany did not experience sizeable rises in real house prices in either period. The countries that saw rises of 10 per cent or more in both booms are the UK, US, France, Canada, Italy, Spain, the Netherlands, Belgium, Ireland, Finland and Sweden. The average rise in house prices across all fifteen countries was somewhat lower in the latest boom than in the earlier one, but when calculated only for the boom countries mentioned above, it is almost identical at around a 40 per cent rise in real house prices. So in this fundamental aspect the boom periods are similar. As regards the dispersion of real house price changes, it was lower in the more recent boom, suggesting a role for international contagion (the standard deviation of price rises in the boom countries was 17 per cent in the later boom and 29 per cent in the earlier boom). Agnello and Schuknecht (2011) suggest that global liquidity could have played an important role in occurrence of simultaneous housing booms in the 2000s.

Real personal disposable income was considerably more buoyant in the earlier boom period than in the 2002-6 period. On average, incomes rose 18 per cent in the 1980s and only 10-11 per cent in the 2000s. On the other hand, the rise in household debt was higher in the later period, especially for those countries that experienced booms in both periods, where the rise in the later period was 59 per cent compared to 47 per cent in the earlier boom. We decided in the light of this to calculate correlation coefficients for overall changes in each variable, with real house prices in the different boom periods. There are marked differences in that the correlation of RPDI with real house prices was much higher in the earlier period, especially when one calculates across the countries experiencing two distinct booms. On the other hand, table 1 shows that the correlation with household debt was markedly higher in the later period.

Meanwhile nominal house prices rose more in the earlier boom, corresponding to higher inflation in the 1980s. This in turn had an impact on real household debt, with a greater reduction in value of nominal debt in the earlier period. Real financial wealth grew much more in the earlier period despite the stock market crash of 1987, rising at rates in excess of real house prices whereas in the later boom real house prices rose more than wealth. Of course the series are not directly comparable as real gross financial wealth rises due to accumulation as well as asset price rises.

Table 2 shows comparable data and calculations for the post-boom 'aftermath' period for each boom. The average change in real house prices was comparable in the earlier 'aftermath' from 1990-94 with the more recent period covering 2007-11, both being around -6 to -7 per cent, despite the differing levels of general inflation. This masks considerable cross-country variation, however, with for example the UK, Sweden and Finland, that experienced banking crises in the early 1990s, showing larger falls in the earlier period, and the US and Spain among others in the later period. On average, changes in personal income were larger in the earlier period, at around 7 per cent compared to 2 per cent. On the other hand, real household debt rose more in the aftermath of the 2002-6 boom, at 10 per cent or more compared to 8 per cent. Again, this was not true of all countries, with the UK and US both showing falls in real household debt over the more recent period, as households sought to delever. The correlation of RPDI changes with real house prices is again lower in the later period while that of household debt with house prices is higher, and is very high for the boom countries (0.88). Meanwhile, nominal house prices rose in the aftermath of the earlier boom (reflecting general inflation) while they fell in the later one. Similarly to income, real gross financial wealth rose in 1990-94 while it was flat in 2007-11, reflecting the global financial crisis, Canada being the main exception. (6)

As a factor possibly underlying these patterns, as well as being of wider relevance to macroprudential policy, we examine the behaviour of two indicators of financial fragility, namely the household debt/personal income ratio (which is of course mainly housing debt), and the household debt/house price ratio, a rough measure of leverage in housing. Note, however, that the equilibrium level of the debt/income ratio may be rising, as cross-country analysis suggests that the income elasticity of credit exceeds one (Badev et al., 2014). The authors also note the ratio is higher in countries with mortgage bonds as a primary funding source. Table 3 shows the more recent boom period was characterised by greater rises in leverage on both measures (it was also from a higher base). On average, the debt/income ratio for households rose by around 25 percentage points over 2002-6 as compared to only 8-9 per cent in 1985-9. Obviously underlying this is the greater relative buoyancy of incomes in the earlier period as shown in table 1. Meanwhile, the rise in debt deflated by house prices was also much higher in the recent boom, being around 15 per cent compared with 8-9 per cent.

These patterns are of interest since the earlier boom is often characterised as an adjustment to desired levels of leverage following liberalisation, when in fact rises were smaller than in recent years and from a lower base. This is an indicator of greater fragility of households in the 2000s. All other things were not, of course, equal in that interest rates were typically higher in the earlier period, meaning that the rise in the interest burden was less in the later period than if the same rise in debt had occurred in the earlier period. That said, the recent rise in debt and in leverage did leave many households vulnerable to negative equity when nominal house prices fell.

As regards the comparable figures for the aftermath periods, households reduced their debt/income ratios in 1990-94 but they rose over 2007-11, albeit not in the UK or US. The debt/house price ratio rose in both post-boom periods, with house price rises being lower than changes in household debt. The run-up is remarkably high on average at around 20 per cent in both cycles.

Concluding this section, we have seen a great deal of commonality between the booms and their aftermath from 1985-94 and 2002-11, notably in real house price rises and in their main determinants. There are also some contrasts. These relate especially to weaker growth in incomes in both the boom and the aftermath in the later period, while on most measures, debt and indebtedness rose to a greater extent, even though house price patterns in both boom and aftermath were on average very comparable. Correlations of house prices with income seem to be lower and those with household debt higher in the later period. We now go on to further investigate house price determination over the different cycles since liberalisation, to assess differences across cycles more systematically, which is detailed in the following sections.

2. Specifications for house price determination (7)

Typical estimates for determination of house prices are in two parts. There is first a cointegrating levels equation which forms an inverted demand function for housing but also includes a supply effect such as the stock of housing which determines the long-run price of housing (Meen, 2002; Barrell, Kirby and Whitworth, 2011; Adams and Fuss, 2010; Igan and Loungini, 2012; Muellbauer and Murphy, 2008; Capozza et al., 2002). The second stage estimation of the dynamics recognises that actual house prices deviate from their fundamental values in the short run and typically uses an error correction framework to allow for these differences. This allows the examination of factors that drive house price dynamics. The two stages may be combined, as in our work shown below, in a single stage error correction estimation.

In this context, considering housing as an asset among others, Capozza et al. (2002) specifically focus on the properties of serial correlation and mean reversion of house prices in such an error correction framework. Informational reasons, transaction costs, credit rationing and supply side factors help explain serial correlation and mean reversion which may in turn differ across countries and time. To test the above proposition, they augment the long-run relationship with dynamic terms according to:

[DELTA][P.sub.t] = [alpha][DELTA][P.sub.t-1] + [beta]([P.sup.*.sub.t] - [P.sub.t-1]) + [gamma][DELTA][P.sup.*.sub.t] (1)

where [alpha] is the serial correlation coefficient, [beta] is the mean reversion coefficient to the gap with the long-run value [P.sup.*] determined by the cointegrating equation and the adjustment to disequilibrium 0<[beta]<1. [gamma] is the immediate partial adjustment to the long-run value.

In general as [alpha] increases, the amplitude and persistence of the cycle will increase whilst as [beta] increases the frequency and the amplitude of the cycle will increase. Note that this structure implies that house prices do not follow a random walk, unlike tradable financial assets, but rather are predictable. We incorporate this structure into our own work, with the partial adjustment to the long-term value being incorporated by dynamic difference terms in each non-stationary variable.

For our long run we follow in the approach in the literature of a log-linear transformation of all the variables, where a cointegrating relationship would be identified with those fundamentals that possess a unit root (defining [P.sup.*]). Studies vary in terms of the members of the vector of fundamentals for the inverted demand function. For example, in Capozza et al. (2002) the set of long-run determinants includes population levels, real median income levels, the long-run (5-year) population growth rate, real construction costs and the user cost of housing. In Muellbauer and Murphy (2008) the vector of long-run variables includes real disposable (non-property) income, the sum of mortgage rates and stamp duty rates, the national credit conditions index and a term which interacts the mortgage rate with the credit conditions index. Barrell, Kirby and Whitworth (2011) include the real borrowing rate, the 3-month nominal interest rate, the loan-to-income ratio, the loan-to-value ratio, per capita real disposable income, the ratio of the number of households to the housing stock, and the number of households. (8) Adams and Fuss (2010) include economic activity, construction costs and the long-term interest rate. Igan and Loungini (2012) model real house price changes as a function of changes in disposable income, working-age population, equity prices, credit, and the level of short- and long-term interest rates. Our previous work (Davis et al., 2011) in line with but also broadening the literature, used real personal disposable income, the real long rate, real household liabilities, real gross financial wealth, the unemployment rate, log real housing stock and 20-39 as a share of population (the main house buying cohort).

As regards econometric approaches, the studies cited above among others specify dynamics by using autoregressive distributed lag models in error correction form, with a one period lag on the long run to control for endogeneity. The VAR (Hott and Monin, 2008; Calza et al., 2013) and the SVAR (Tsatsaronis and Zhu, 2004) are also commonly used to estimate dynamics since such studies can then focus on the interdependencies of house prices and their determinants such as term spreads, house price inflation, GDP growth and the growth rate of private sector credit. Other approaches include the VECM (Kemme and Roy, 2012; Gattini and Hiebert, 2010; Lindner, 2014) and spatio-temporal impulse responses to gauge the degree to which shocks diffuse over time and space (Holly, Pesaran and Yamagata, 2010). Some recent studies have looked at housing booms and busts as individual observations and estimated determinants by probit (Agnello and Schuknecht, 2011; Benetrix et al., 2012). Whereas many studies have focused on house price determination in an individual country (such as Muellbauer and Murphy, 1997, 2008, and Barrell et al., 2011, for the UK and Lindner, 2014, for the US) a number of recent pooled or panel studies are also extant. Besides our own work (Davis et al., 2011) for eighteen OECD countries, which was focused on the possible use of macroprudential tools in housing, Capozza et al. (2002) look at US Metropolitan areas, Adams and Fuss (2010) apply panel cointegration to fifteen countries using Dynamic Ordinary Least Squares, while Igan and Loungini (2012) apply pooled OLS to 22 countries.

All of these approaches are fraught with identification problems, which make it difficult to separate supply and demand factors, and exogenous and endogenous determinants of house prices. All work on house prices faces this challenge and there is no definitive solution. Concerning identification in error correction models, (9) there are several hard-to-observe variables in a house price model, notably the risk premium and expected appreciation. Identifying these would be a problem inside or outside the single equation framework. So it will always be hard to give strict structural interpretations to an error correction model in the absence of very good survey data that tried to measure these concepts. However, it can still be argued that on reasonably plausible assumptions, one can still identify structural parameters such as the implied income elasticity of demand for housing and the implied price elasticity by estimating an inverse demand model, as do the authors above. Notably, if the risk premium is determined by the same variables as house prices, then one can still identify the income or price elasticity. Meanwhile expected appreciation may be captured by a lagged difference as in most extant work. We follow this approach, due to John Muellbauer, in our work. (10) Meanwhile SVARs can impose appropriate identifying restrictions, while in VARs and VECMs shocks can be identified using the Choleski decomposition.

Some variables have typically been omitted from house price equations, although economic reasons for their inclusion can be suggested. For example, unemployment may impact on house prices via demand and also if it entails widespread defaults and consequent 'fire sales' but is typically not included in house price equations, although in Andrews (2010) the unemployment rate is used as part of the identification framework as a form of demand shock. Financial liberalisation distinguishes periods when there is or is not credit rationing and is also used by Andrews (ibid) as showing demand shocks.

Banking crises give rise to uncertainty and credit rationing that other variables may not adequately capture and is a third form of demand shock. We add all three of these variables to our work.

Mortgage spreads (loan less deposit rates) are also typically not included in house price equations, whereas these could be relevant to the impact of capital requirements on interest rates, as in Barrell et al. (2009) and Davis and Liadze (2012) and have important consequences for household incomes as well as for house price dynamics.

Furthermore, although housing is part of the asset portfolio of the household sector, most studies do not include household gross financial wealth, as a substitute asset, a rise in whose value would lead to rising demand for housing for portfolio balance reasons. Another portfolio effect could be included via the long-term interest rate, which is both a proxy for the user cost (especially influencing mortgage rates) but also the opportunity cost of investing in housing when the bond yield changes (Adams and Fuss, 2010).

3. Specification and data

In the light of the data and the above brief literature survey, we sought to estimate panel equations for house prices in OECD countries. Given the extensive availability of cross-country data from the BIS, UN and OECD databases, (11) we have scope to investigate the common patterns of property price movements, while at the same time controlling for heterogeneity across time in housing dynamics as well as between countries. From an econometric perspective, a panel approach gives more informative data, more variability, less collinearity among variables, more degrees of freedom and more efficiency (Baltagi, 2005, p. 5). Following Capozza et al. (2002) we allow for serial correlation and mean reversion as well as sensible long-run variables in an inverse demand function estimated as an error correction model.

The data sample we are able to use for most countries goes back to the 1970s. We hence include periods when there has been liberalisation as well as structural regulation in the housing market. This can be justified by the need for cointegration equations to have as long a data period as possible, but will also enable us to capture the differences in behaviour between liberalised and non-hberalised periods as well as between the cycles incorporating boom periods outlined in the tables of Section 1. We also estimate for three sub-periods, namely the pre-liberalisation period before 1982, the first postliberalisation cycle over 1982-97 and the second broad cycle over 1998-2013, and for some estimates the full 1982-2013 period. Note that we use quarterly data for the cross-country panel work and focus on the boom countries, namely UK, US, France, Canada, Italy, Spain, the Netherlands, Belgium, Ireland, Finland and Sweden as defined above.

Our modelling started from the approach of Capozza et al. (2002) set out above with variables as in Davis, Fic and Karim (2011). Accordingly, our variables are as follows: log real house prices, log real personal disposable income, the real long rate, log real household liabilities, log real gross financial wealth, unemployment rate, log real housing stock and 20-39 as a share of population (the main house buying cohort--which in countries such as the UK is also strongly driven by immigration in recent years, in turn affecting house prices). We also include dummies for banking crises and financial liberalisation. (12) The Im-Pesaran-Shin panel unit root tests for the main variables (not illustrated) show most variables, being trended, are 1(1) thus justifying an error correction model-based approach to estimation, while the share of 20-39s is stationary (1(0)). Changes in real house prices were regressed on contemporaneous changes in explanatory variables, and lagged dependent and explanatory variables (both in levels) as well. This error-correction specification is able to deal with nonstationarity in the data (as mentioned above), and at the same time distinguishing short- and long-run influences, and differences between cycles. The significance of the coefficients for lagged non-stationary variables (in levels) and their magnitude reveal the long-term relationship among those variables.

We undertake panel regression that treats all countries as equally important, while the fixed effects take account of heterogeneity, and we impose cross-section weights. The breakdown over sub-periods offers deeper insights by allowing for richer heterogeneity, e.g. distinctive economic determinants in each sub-sample (compared to the full sample regression). The combination of the full period regression and the sub-sample panel regressions reveal elements of both commonality and uniqueness in cycles in those countries. To confirm the existence of the long-term relationship, we also implement the panel cointegration test proposed by Kao (1999) among those variables with significant lagged level terms in a simple levels equation (i.e. the first step of an Engle and Granger (1987) two-step estimation).

4. Results

Further to the discussion above, we present the results for an extended equation including house prices, RPDI and real long rates but also including the log of real gross financial wealth, the unemployment rate, the log of the real housing stock and the 20-39 age group as a share of the population (see Davis, Fic and Karim, 2011, for earlier estimates of such a wider specification using annual data).

We find a consistent short-run income effect, albeit it is lower after liberalisation. On the other hand, the short-run effect of interest rates is insignificant. The serial correlation effect is very strong (i.e. the lagged first difference of real house prices) and rising over the sample. As noted above, this implies a higher amplitude and persistence of the cycle and a growing role for extrapolative expectations in most recent cycles. The lagged house price variable is generally significant. The implied speed of adjustment to the long run is lower since liberalisation, suggesting longer cycles. Adams and Fuss (2010) also find a long adjustment period of fourteen years in a cross-country panel on a recent sample. The long-run income effect is positive and significant but only in the most recent period. The long-run interest rate effect is significant at the 10 per cent level in the 1982-97 period only.

For the population distribution, signs change between periods. The share of 25-39 year olds in the total population who are the main house buyers may be overwhelmed by the ageing of the large baby boom generation that has the resources to buy houses at any age. The long-run effect of the housing stock is significant post-liberalisation with an expected negative sign whereby a higher stock (indicating greater supply) leads to lower house prices. The change in unemployment is generally significant, albeit lower post-liberalisation. The long-run effect of unemployment is significant post-liberalisation. The short-run financial wealth effect is generally significant and positive, suggesting a portfolio balance effect (higher financial wealth is distributed to housing as an additional asset). On the other hand, whereas the long-run financial wealth effect is significant post-liberalisation its sign changes (this may reflect stock market patterns). The banking crisis dummy is consistently significant, while the liberalisation dummy is not. The Kao (1999) tests show consistent cointegration in the first stage levels variables. On balance we suggest that these results do not suggest radical differences between the two cycles since liberalisation.

Complementing table 4, and confirming this insight, we estimated leveraged coefficients for the earlier cycle 1982-97 in a regression for 1982-2013 (not shown in detail). This shows that the only significant differences between cycles are mean reversion being lower in the 1997-2013 period, while the impact of unemployment was higher in the 1980s. Serial correlation is the same. Overall, this is strong evidence that the cycles are similar.

In a further exercise we looked at leveraged effects during the booms, testing whether there is a differential effect of the determinants in such periods, as shown in table 6.

Leveraged coefficients show a higher effect for the rise in RPDI and a lower (negative) effect for real long rates. There is shown to be more serial correlation in booms with a larger coefficient on the lagged difference of house prices, consistent with the suggestion in Dokko et al. (2011) and Shiller (2007) that expectations of future house price growth among borrowers, lenders and investors play a key role in bubbles. The demographic effect of a higher number of 25-39 year olds has a higher effect in booms, consistent with Muellbauer and Murphy (1997) on the 1980s boom in the UK. In the extended equation, it is in the 1985-9 case that there are larger effects of rising income and lesser effects of rising interest rates. The earlier boom also saw a lower long-run effect of gross financial wealth and a higher effect of debt, suggesting households were leveraging themselves into real assets and partly substituting out of financial assets. The only difference for the later boom in the leveraged coefficients is in the long-run adjustment coefficient, with a significant negative sign, suggestive of more rapid adjustment to long-run equilibrium. All of these leveraged results are of potential relevance for macroprudential policy, suggesting normal house price behaviour in respect of determinants is not always maintained in booms. On the other hand they should not be exaggerated, for the most part the equations are stable.

5. House prices and mortgage supply

Mortgage market innovations that have greatly altered the terms and availability of credit have emerged in OECD financial markets over the past 30 years (OECD, 2005). Financial deregulation in the 1980s not only increased competition, it has also led to the creation of new products such as buy-to-let mortgages, interest-only loans and offset mortgages which allow borrowers to offset their savings against the mortgage balance. Meanwhile, the widespread development of the securitisation markets in the 2000s, following their earlier evolution in the US (Hendershott, 1994) eased access to mortgage credit further since it is no longer limited by the capital of the originating institution.

As a result of such innovations, the availability of mortgage credit has risen dramatically in Europe and the US. Miles and Pillonca (2008) note that although the mortgage debt to GDP ratio varies across Europe (exceeding 70 per cent in countries like the UK and Denmark), the stock of mortgage debt has risen in all cases. Consequently house buyers have seen a relaxation in their borrowing constraints and they contend that this has fed back positively to house prices.

Few house price models have taken these fundamental changes into account. Indeed, a key question raised by financial liberalisation is whether the stock of mortgages is appropriately included in house price equations. This was traditionally the case in pre-liberalisation estimates in countries such as the UK (e.g. Hendry, 1984) but was judged by authors such as Muellbauer and Murphy (1997) to be inappropriate in a post-liberalisation sample, since the stock of lending is endogenous to the determination of house prices. On the other hand, if there remains a degree of rationing for some participants in the housing market, then the mortgage stock could have a role to play, and all the more if macroprudential policies have an effect of reintroducing forms of credit rationing.

An alternative way of considering this question is set out in Lindner (2014), who notes there are two alternative views of the link from asset prices (such as those of housing) to credit. The first is the Bernanke and Gertler (1989) and Kyotaki and Moore (1987) view that it is asset prices that drive credit availability via changes in the net worth of borrowers that in turn eases borrowing constraints in the presence of asymmetric information. This is consistent with the exclusion of credit from house price equations. On the other hand, Allen and Gale (2000) suggest that the availability of credit is the more exogenous factor, with the key influence being risk shifting by lenders and borrowers in the presence of asymmetric information and limited liability, with consequent moral hazard. These may in turn be facilitated by financial deregulation. Lindner (2014) suggests that the net worth argument is most relevant to credit availability in general whereas risk shifting is appropriate for the financing of a particular asset such as housing by credit. Consistent with this, empirical studies using total credit (such as Davis and Zhu, 2011) tend to be more consistent with one-way causality from asset prices to credit than those focused on housing (such as Gimeno and Martinez-Carrascal, 2010) which find two-way causality. Lindner (2014) finds mortgage credit does drive house prices in the US although there is also Granger causality in the other direction.

In the wider literature, Calza et al. (2013) show that the structure of housing finance has an impact on the transmission of interest rates to both house prices and consumption. Igan and Loungini (2012) find a significant effect of the difference of credit but add that, due to potential endogeneity, "we refrain from interpreting the positive correlation between credit growth and house price appreciation as causation and leave establishment of such a causal link for further research" (ibid, p. 16). We proxy credit to attempt to overcome this problem. Meanwhile, Muellbauer and Murphy (2008) include a credit conditions index which they introduce both alone and as an interaction term with the mortgage rate. The credit conditions index is constructed using ten consumer credit and mortgage market indicators as described in Fernandez-Corugedo and Muellbauer (2006). It is included so as to capture shifts in the credit supply function faced by households in the post-1980s era. The authors note that by omitting this variable, previous house price models in the literature (which typically utilise pre-1980s data) suffer from omitted variable bias, including those incorporating volumes of credit. Meanwhile, Claessens et al. (2011) contend that credit spreads and credit conditions may be more relevant to macroeconomic trends than the volume of credit.

In our work we use the simpler measure of the real stock of mortgages as a credit variable, to provide some suggestive results on the potential effects of credit and liberalisation thereof in the different booms.

We went on to test within the panel error correction framework by adding the level and difference of the real mortgage debt stock to the extended equation. As regards debt (table 6), no long-run effect of the debt stock on house prices is detectable, even pre-liberalisation; on the other hand, the short-run effect is consistently significant (proxied by lags to avoid simultaneity). Credit is shown to have a short-run but not a long-run impact on house prices, j ustifying a focus of macroprudential policy on credit for this reason as well as due to risk, but with no major distinction for the latest cycle.

Using leveraged coefficients, we see that both the difference and the level effect of credit is significantly more positive in booms than in other periods (table 7) while there is no corresponding effect in the aftermath except in 1990-94, when effects were again more sizeable. In that period, both a rise in credit and a higher level have a significant effect on house prices. This is consistent with the suggestion that financial liberalisation had a significant effect on the booms, again offering grounds for caution in macroprudential policy. This effect was most strongly present in the earlier boom and not in the recent one, suggesting that the recent boom is not out of line with historical experience.

6. Potential underlying factors

In this paper we have focused on the actual differences between booms rather than underlying determinants of the differences. We have seen that the differences both statistically and econometrically are fairly minor, suggesting the housing cycle itself was not core to the recent crisis. As we conclude, we note briefly some structural differences between the 1980s and 2000s, common to a number of countries, that could underlie the differences and warrant further research, not least as background for macroprudential policy.

Levels of debt and the relation to inflation

The earlier boom began at a much lower level of the debt/ income ratio, and followed a period of credit rationing. Accordingly, the earlier boom is commonly cited as an adjustment to desired levels of debt. In contrast, the later boom followed a period of less restricted availability of debt. In this context, it is interesting that debt/income rose more in the more recent boom (table 1), which may of course link partly to higher inflation in the 1980s affecting real debt more than real income.

Interest rates and the impact of global liquidity

Although the equations take into account the levels and changes in real long-term interest rates, there may be further investigation warranted in terms of short rates and the response of monetary policy to high levels of global liquidity, which in turn implied common house price patterns across countries (Agnello and Schuknecht, 2011).

Patterns of securitisation

Whereas as noted by Hendershott (1994), securitisation in the US began to have an impact in that country's housing market in the 1980s, it is in the 2000s that securitisation has had a much more global impact, as well as being higher risk as private securitisations became more dominant.

Changing patterns of owner occupation

If owner occupation is itself changing then the pattern of debt/income has a different implication from a constant level of owner occupation. Patterns for the UK show a marked rise in the 1980s following the 'right to buy' council houses whereas in the US the main recent rise in owner occupation was over the period 1994-2004 (13) (see Ortalo-Magne and Rady, 1999, for an analysis of the UK in this context).

Population density

Miles (2012) develops a model of the housing market where the major determinant of house price rises relative to incomes is the evolution of population density. Rising population density together with buoyant population and incomes increasingly generate price responses and diminishing rises in the stock of housing as supply is less elastic in densely populated countries. The related patterns for the different credit booms across the OECD countries warrant investigation.

Behaviour of banks

While our regressions show similar responses of house prices to their direct determinants, a key difference in the cycles was clearly the impact a given change in house prices had on financial markets, ratings and the behaviour of banks. Many banks in the 1980s had already suffered the LDC debt crisis of 1982 so those banks affected would likely be more cautious in mortgage lending. Also the global transmission of risk was much greater in the 2000s (e.g via mortgage-backed securities) as was opacity of credit markets.

Conclusion

We have undertaken a statistical and econometric comparison of house price and mortgage behaviour in the booms of the 1980s and the 2000s. There are more similarities than contrasts between the booms. Stylised facts include a similar rise in real house prices where booms took place, and a marked rise in the real mortgage stock along with real incomes and financial wealth. The aftermath periods are also comparable in terms of house price changes and related determinants. Econometrically, determinants of house prices are similar in size and sign from the 1980s to date. There remain some contrasts. Leverage rose far more in the later episode and did not contract in the aftermath. Mean reversion of house prices is greater in the earlier period. The earlier boom period showed differences with average house price behaviour which was not mirrored in the most recent boom and inflation was higher.

Despite the contrasts, on balance we reject the idea that the recent boom was in some way unique and hence the key cause of the crisis. This poses a challenge for the existing narrative claiming the housing boom was the unique and key determinant of the crisis. We suggest that other factors distinguishing the cycles that warrant further research include the initial level of debt/income and the related impact of inflation, the impact of lower interest rates in the recent boom and global contagion via liquidity in the recent episode; the ready availability of credit from mortgage bond issuance. Also changing owner occupation rates and patterns of population densities may have had a markedly different effect across the booms. And of course the behaviour of banks and financial markets differed. All of these factors may need to be allowed for in macroprudential policies.

REFERENCES

Adams, Z. and Fuss, R. (2010), 'Macroeconomic determinants of international house price cycles', Journal of Housing Economics, 19, pp. 38-50.

Agnello, L. and Schuknecht, L. (201 I),'Booms and busts in housing markets; determinants and implications', Journal of Housing Economics, 26, pp. 171-90.

Allen, F. and Gale, D. (2000),'Bubbles and crises', The Economic Journal, 110 (460), pp. 236-55.

Andrews, D. (2010),'Real house prices in OECD countries, the role of demand shocks and structural and supply factors', OECD Economics Department Working Paper 831.

Aron, J., Muellbauer, J. and Murphy, A. (2007), 'Housing wealth, credit conditions and UK consumption', Discussion Paper, Centre for Economic Policy Research, London.

Badev, A., Beck, T., Vado, L. and Walley, S. (2014), 'Housing finance across countries, new data and analysis', World Bank Policy Research Working Paper 6756.

Baltagi, B.H. (2005), Econometric Analysis of Panel Data, London, John Wiley.

Barrell, R., Davis, E.R, Fic, T., Holland, D., Kirby, S. and Liadze, I. (2009), 'Optimal regulation of bank capital and liquidity: how to calibrate new international standards', FSA Occasional Paper No 38.

Barrell, R., Davis, P., Karim, D., Liadze, I., (2010), 'Bank regulation, property prices and early warning systems for banking crises in OECD countries 'Journal of Banking and Finance, 34, pp. 2255-64.

Barrell, R., Kirby, S. and Whitworth, R. (2011),'Real house pices in the UK', National Institute Economik Review, 216, F62.

Benetrix, A.S., Eichengreen, B. and O'Rourke, K.H. (2012), 'How housing slumps end', Economic Policy, pp. 648-92.

Bernanke, B.S. and Gertler, M.( 1989), 'Inside the Black Box: the credit channel of monetary policy transmission', The Journal of Economic Perspectives, 9, pp. 27-48.

Calza, A., Monacelli, T. and Stracca, L. (2013), 'Housing finance and monetary policy', Journal of The European Economic Association, 11, pp. 101-22.

Capozza, D.R., Hendershott, P.H., Mack, C. and Mayer, C.J. (2002), 'Determinants of real house price dynamics', NBER Working Paper, 9262.

Claessens, S., Kose, M.A. and Terrones, M.E. (2011), 'How do business and financial cycles interact?', IMF Working Paper WP/11/88.

Davis, E.P. (1995), Debt, Financial Fragility and Systemic Risk, Oxford University Press.

Davis, E.P., Fic, T.M. and Karim, D. (2011),'Housing market dynamics and macroprudential tools', Brunei Economics and Finance Working Paper 11-07, and in RUTH, the Riksbank's Report on the Swedish Housing Market.

Davis, E.P. and Liadze, 1.(2012), 'Modelling and simulating the banking sectors of the US, Germany and the UK', NIESR Discussion Paper 396.

Davis, E.P. and Zhu, H. (2011), 'Bank lending and commercial property cycles: some cross-country evidence', Journal of International Money and Finance, 30, pp. 1-21.

Dokko, J., Doyle, B.M., Kiley, M.T., Kim, J., Sherland, S., Sim, J. and Van Den Hewel, S. (201 I),'Monetary policy and house prices', Economic Policy, April, pp. 237-87.

Engle, R.F. and Granger C.W.J. (1987), 'Co-integration and error correction: representation, estimation and testing', Econometrica, 55, pp. 251-76.

Fernandez-Corugedo, E. and Muellbauer, J. (2006), 'Consumer credit conditions in the United Kingdom', Bank of England working papers 314, Bank of England.

Gattini, L. and Hiebert, P. (2010), 'Forecasting and assessing Euro Area house prices through the lens of key fundamentals', ECB Working Paper Series, No 1429/ October 2010.

Gimeno, R. and Martinez-Carrascal, C. (2010), 'The relationship between house prices and house purchase loans, the Spanish case', Journal of Banking and Finance, 34, pp. 1849-55.

Hendershott, R (1994), 'Housing finance in the United States' in Noguchi, Y. and Poterba, J. (eds), Housing Markets in the US and Japan, University of Chicago Press.

Hendry, D.F. (1984), 'Econometric modelling of house prices in the United Kingdom' in Hendry, D.F. and Wallis, K.F. (eds), Econometrics and Quantitative Economics, Oxford, Basil Blackwell, pp. 135-72.

Holly, S., Pesaran, H.M. and Yamagata, T. (2010), 'Spatial and temporal diffusion of house prices in the UK 'Journal of Urban Economics, 69, 1, pp. 2-23.

Hott, C. and Monnin, R (2008), 'Fundamental real estate prices: an empirical estimation with international data', The Journal of Real Estate Finance and Economics, 36, 4, pp. 427-50.

Igan, D. and Loungini, R (2012), 'Global house price cycles', IMF Working Paper WP/12/217.

IMF (2008a), 'Housing and the business cycle', World Economic Outlook, April 2008, Washington DC., International Monetary Fund.

--(2008b), World Economic Outlook Fall 2008, Washington DC., International Monetary Fund

Kao, C. (1999),'Spurious regression and residual-based tests for cointegration in panel data', Journal of Econometrics, 90, pp. 1-44.

Kemme, D.M. and Roy, S. (2012), 'Did the recent housing boom signal the global financial crisis?', Southern Economic Journal, 78, pp. 999-1018.

Kyotaki, N. and Moore, J. (1997), 'Credit cycles', Journal of Political Economy, 105, pp. 211-48.

Lindner, F. (2014), The interaction of mortgage credit and housing prices in the US', Working paper 133, Macroeconomic Policy Institute, Duesseldorf.

Meen, G. (2002), The time series behaviour of house prices: a transatlantic divide?', Journal of Housing Economics, 11, pp. 1-23.

Miles, D. (2012),'Population density, house prices and mortgage design', Scottish Journal of Political Economy, 59, pp. 444-66.

Miles, D. and Pillonca, V. (2008),'Financial innovation and European housing and mortgage markets', Oxford Review of Economic Policy, 24(1), pp. 145-75.

Muellbauer, J. and Murphy, A. (1997), 'Booms and busts in the UK housing market', Economic Journal, 107, 445, pp. 1701-27.

--(2008), 'Housing markets and the economy: the assessment', Oxford Review of Economic Policy, 24, 1, pp. 1-33.

OECD (2000), OECD Economic Outlook, Paris, Organisation for Economic Cooperation and Development.

--(2005), 'Recent house price developments, the role of fundamentals', OECD Economic Outlook, 78, pp. 123-54.

Ortalo-Magne, F. and Rady, S. (1999), 'Boom in, bust out, young households and the housing price cycle', European Economic Review, 43, pp. 755-66.

Shiller, R. (2007),'Understanding recent trends in house prices and home ownership', NBERWorking Papers 13553, National Bureau of Economic Research, Inc.

Tsatsaronis, K. and Zhu, H. (2004),'What drives house price dynamics, cross country comparison', BIS Quarterly Review, March.

NOTES

(1) We prefer the word 'aftermath' since house prices rarely 'crash' in the way that financial asset prices do, not least owing to the dual use of houses for consumption of housing services as well as for investment.

(2) For example in the US, portfolio restrictions on banks and non-banks, prohibitions on adjustable rate mortgages, tax inducements to non-banks and deposit rate ceilings were all abolished in the early 1980s (Hendershott, 1994). In following years, securitisation began to be prominent as a source of mortgage finance, albeit not attaining the importance it did in the 2000s. See also OECD (2000) for a compendium of liberalisation measures in the major countries studied here.

(3) IMF (2008b) dates the end of the 2000s cycle in line with us, suggesting a corresponding overvaluation in the 'boom countries' at the end of the upturn of over 10 per cent, with the exceptions being Finland and Canada.

(4) Barrell et al. (2010) show that the three-year lagged difference of house prices is an important predictor of banking crises in OECD countries.

(5) We do not have mortgage debt for all countries so use this variable for comparability purposes--and because it shows the overall vulnerability of the household sector.

(6) We focus on the first moment in our presentation. We may add that housing markets are typically characterised by less volatility than equity, bond or foreign exchange markets, but liberalised credit markets do give scope for housing to be treated as an asset rather than only a source of housing services. Given the greater likely weight of such investment demand in a boom we could expect house prices to be more volatile in such periods. We calculate (not shown in detail) that house price volatility was higher in the earlier boom than the later one. Also, in the 1985-94 decade, house price volatility up to 1989 was considerably higher than in 1990-94, on average, whereas in the 2002-11 period there was a rise in volatility after the onset of the banking crisis, a pattern which was particularly apparent in the boom countries.

(7) This section draws partly on earlier work for the Swedish Riksbank by Davis, Fic and Karim (2011).

(8) Estimating solely for the UK, there is scope for a much wider range of variables than in panel studies such as Adams and Fuss (2010), Igan and Loungini (2012) and our own work.

(9) We thank John Muellbauer for these insights.

(10) Note, however, that unlike Muellbauer and his recent coauthors (such as in Aron et al., 2007), we are unable to derive credit conditions indices for a range of countries, so in Section 5 we use credit itself which is less satisfactory as a credit supply proxy.

(11) Note that the population data that we use are interpolated annual data from the UN Demographic database.

(12) We used dates from OECD (2000) to fix the time of financial liberalisation, banking crises are as in Barrell et al. (2009).

(13) UK owner occupation for example rose from 50 per cent in 1971 to 69 per cent in 1991, whereas it fell in the 2001-11 period from 69 per cent to 64 per cent. US owner occupation was flat from 1985-90 then rose from 64 per cent to 69 per cent in the period 1994-2004 but then fell back to 65 per cent in 2014.

Angus Armstrong * and E. Philip Davis **

* National Institute of Economic and Social Research. E-mail: a.armstrong@niesr.ac.uk. ** National Institute of Economic and Social Research and Brunei University. E-mail: e_philip_davis@msn.com. We thank John Muellbauer, anonymous referees and participants at the conference for helpful comments. Errors remain our own responsibility.
Table 1. Changes in house prices, income and debt during booms

Percentage                Real house             RPDI
change                      prices

                      1985Q1    2002Q1    1985Q1    2002Q1
                       -89Q4     -06Q4     -89Q4     -06Q4

United Kingdom          71        49        23        10
United States           12        29        17        14
Germany                  1        -2        18         5
France                  28        64        14        11
Canada                  32        25        17        19
Italy                   32        20        17         3
Spain                  110        62        27        17
Austria                 68        -5        21        13
Netherlands             24        11        16        -2
Belgium                 32        41        17         3
Denmark                 -8        56         5        10
Ireland                 12        48        16        18
Finland                 56        32        24        17
Sweden                  35        44        10        12
Japan                   27       -17        22         4

mean                    35        30        18        10
mean (boom
  countries)            40        39        18        11
correlation                               0.74      0.41
correlation
  (boom countries)                        0.79      0.42

Percentage              Real household      Nominal house
change                       debt               prices

                      1985Q1    2002Q1    1985Q1    2002Q1
                       -89Q4     -06Q4     -89Q4     -06Q4

United Kingdom          74        50        112       65
United States           40        48        31        44
Germany                 18        -3         6         4
France                  51        42        49        78
Canada                  53        44        60        35
Italy                   88        40        76        36
Spain                   23        83       190        90
Austria                 16        26        81         4
Netherlands             16        42        25        21
Belgium                 21        29        46        56
Denmark                 21        44         8        67
Ireland                 38        145       33        69
Finland                 78        83        91        35
Sweden                  35        45        78        52
Japan                   59         0        33       -20

mean                    42        48        61        42
mean (boom
  countries)            47        59        72        53
correlation           0.14      0.58      0.95      0.99
correlation
  (boom countries)    0.06      0.30      0.97      0.97

Percentage                Real gross
change                 financial wealth

                      1985Q1    2002Q1
                       -89Q4     -06Q4

United Kingdom          61        17
United States           31        33
Germany                 37         9
France                  65        26
Canada                  27        17
Italy                   50        10
Spain                   95        41
Austria                 35        27
Netherlands             46        19
Belgium                 56         1
Denmark                 22        58
Ireland                 76        48
Finland                 57        42
Sweden                  94        52
Japan                   80        16

mean                    55        28
mean (boom
  countries)            60        28
correlation           0.47      0.49
correlation
  (boom countries)    0.49      0.35

Source: BIS and OECD.

Notes: Real house prices and real household sector liabilities are
deflated by the consumers' expenditure deflator. Calculations for
the 'boom countries' exclude Germany, Austria, Denmark and Japan. They
include only UK, US, France, Canada, Italy, Spain, the Netherlands,
Belgium, Ireland, Finland and Sweden.

Table 2. Changes in house prices, income, debt and wealth during the
aftermath of booms

Percentage               Real house             RPDI
change                    prices

                     1990Q1    2007Q1    1990Q1    2007Q1
                      -94Q4     -11Q4     -94Q4     -11Q4

United Kingdom        -21       -14        12         3
United States          -3       -24        12         6
Germany                -2        na        11         5
France                 -8        -1         7         3
Canada                -18         2        -1        11
Italy                  12        -6        -2        -6
Spain                  -7       -23        10        -2
Austria                -2         4        12         0
Netherlands            21        -9         8         0
Belgium                14         7        14         2
Denmark                 0       -26         8         2
Ireland                 0        na        14        -4
Finland               -42         0       -13         8
Sweden                -26         7        11         8
Japan                  -9        -8         9         0

mean                   -6        -7         7         2
mean (boom
  countries)           -7        -6         6         3
correlation                              0.46      0.29
correlation (boom
  countries)                             0.46      0.38

Percentage             Real household      Nominal house
change                     debt              prices

                     1990Q1    2007Q1    1990Q1    2007Q1
                      -94Q4     -11Q4     -94Q4     -1IQ4

United Kingdom         10        -8        -5         0
United States          19        -9        11       -17
Germany                25        -7        16         9
France                 -4        22         1         7
Canada                 13        36        -8         9
Italy                  32        10        45         3
Spain                   8        -1        22       -16
Austria                14         5        13        15
Netherlands            22        18        38        -5
Belgium                 9        23        28        18
Denmark               -19        12         9       -18
Ireland                15         8        14       -48
Finland               -21        20       -32        13
Sweden                -18        28        -7        17
Japan                  19        -2        -2       -13

mean                    8        10         9        -2
mean (boom
  countries)            8        13        10        -2
correlation          0.62      0.67      0.93      0.97
correlation (boom
  countries)         0.78      0.88      0.86      0.82

Percentage              Real gross
change                financial wealth

                     1990Q1    2007Q1
                      -94Q4     -11Q4

United Kingdom         21        -6
United States          16        -4
Germany                29         2
France                 17         3
Canada                 18        16
Italy                  15       -17
Spain                  19       -14
Austria                21         5
Netherlands            14         9
Belgium                -3        -2
Denmark                -1        -4
Ireland                18         6
Finland               -16        -4
Sweden                -22         5
Japan                  12         0

mean                   10         0
mean (boom                       -1
  countries)            9
correlation          0.41      0.22
correlation (boom
  countries)         0.19      0.61

Source: NiGEM macroeconomic database.

Notes: See table I.

Table 3. Indicators of leverage in booms and aftermath

                    Debt/personal     Debt/house prices
                    income ratio--      --percentage
                       change in           change
                  percentage points

                  1985Q1    2002Q1    1985Q1    2002Q1
                   -89Q4     -06Q4     -89Q4     -06Q4

United Kingdom      25        30         2         1
United States        3         6        25        15
Germany             -1        -5        17        -1
France               9        12        18       -13
Canada              14        16        16        15
Italy                8        14        42        17
Spain               -3        35       -42        13
Austria             -1         8       -31        34
Netherlands          1        43        -6        28
Belgium              3        11        -9        -8
Denmark              8        44        32        -8
Ireland             13        84        23        65
Finland             17        26        14        39
Sweden               9        21         0         1
Japan               21        -5        25        21

mean                 8        23         9        15
mean (boom
  countries)         9        27         8        16

                    Debt/personal     Debt/house prices
                    income ratio--       --percentage
                       change in            change
                  percentage points

                  1990Q1    2007Q1    1990Q1    2007Q1
                   -94Q4     -11Q4     -94Q4     -11Q4

United Kingdom      -1        -10       39         7
United States        1        -3        22        20
Germany             10        -8        28        -9
France              -4        10         5        23
Canada               7        24        39        34
Italy                7         9        17        17
Spain               -2         2        17        29
Austria              0         2        16         1
Netherlands          7        24         1        30
Belgium             -2        10        -5        15
Denmark            -33        16       -19        52
Ireland             -2        22        15       100
Finland             -9        10        35        20
Sweden             -12        24        12        20
Japan                9        -5        31         7

mean                -2         8        17        24
mean (boom
  countries)        -1        11        18        28

Note: see table 1.

Table 4. Panel results for the log difference of house prices--boom
countries

All                            Pre-1982             1982-1997

Constant                        0.001     (0.1)     -0.77 **  (2.4)
Log difference of RPDI          0.17 **   (6.7)      0.25 **  (3.3)
Difference real long rate      -0.00011   (0.2)      0.00099  (0.5)
Log difference of house         0.56 **   (28.1)     0.41 **  (7.1)
  prices (-1)
Log of house prices (-1)       -0.0097 ** (4.7)     -0.045 ** (2.4)
Log of RPDI(-I)                -9.26E-05  (0.0)      0.078    (1.5)
Real long rate (-1)            -0.0008 ** (4.0)     -0.00071  (0.7)
Population 20-39 as share       0.032     (1.4)     -0.61 *   (1.9)
  of total (-1)
Log stock of housing (-1)      -0.0054    (1.1)      0.027    (0.5)
Difference of unemployment     -0.0041 ** (3.5)     -0.0077 * (1.7)
  rate
Unemployment rate (-1)         -1.47E-05  (0.1)     -0.00052  (0.3)
Log difference of real          0.053 **  (4.6)      0.052 *  (1.6)
  gross financial wealth
Log of real gross financial     0.008 **  (3.5)     -0.00089  (1.1)
  wealth (-1)
Dummy for banking crises       -0.0032 ** (2.7)
Dummy for financial             0.00026   (0.2)
  liberalisation
Countries                            11                   10
Obs                                1612                  275

Adjusted R2                    0.5                  .38
SE of regression               0.16                 0.02
Durbin Watson                  2.13                 2.09
Kao                            -1.58     (0.06) *   -1.85    (0.03) **

All                            1998-2013

Constant                        0.25 **    (2.1)     0.093     (1.2)
Log difference of RPDI          0.15 **    (4.0)     0.19 **   (5.5)
Difference real long rate      -0.00094    (1.0)    -7.13E-05  (0.1)
Log difference of house         0.53 **    (15.7)    0.54 **   (16.6)
  prices (-1)
Log of house prices (-1)       -0.034 **   (5.5)    -0.013 **  (3.0)
Log of RPDI(-I)                -0.0073     (0.5)     0.043 **  (3.6)
Real long rate (-1)            -0.00073 *  (1.7)    -0.00062   (0.7)
Population 20-39 as share       0.12 *     (1.8)    -0.081 *   (1.8)
  of total (-1)
Log stock of housing (-1)      -0.037 **   (2.7)    -0.031 **  (3.1)
Difference of unemployment     -0.0048 **  (2.9)    -0.0027 ** (2.1)
  rate
Unemployment rate (-1)         -0.00074 ** (2.3)    -0.00054 * (1.8)
Log difference of real          0.07 **    (4.1)     0.038 **  (2.5)
  gross financial wealth
Log of real gross financial     0.028 **   (5.2)    -0.014 **  (2.2)
  wealth (-1)
Dummy for banking crises       -0.0034 **  (2.2)    -0.0038 ** (2.5)
Dummy for financial
  liberalisation
Countries                           11                  11
Obs                                687                 650

Adjusted R2                    0.53                 0.6
SE of regression               0.16                 0.011
Durbin Watson                  2.09                 2.11
Kao                            -2.37    (0.01) **   -2.54    (0.01) **

Notes: (-1) indicates a first lag. Boom countries for both recent
cycles are the UK, US, France, Canada, Italy, Spain, the Netherlands,
Belgium, Ireland, Finland and Sweden. Estimated using fixed effects
and cross-section weights. Coefficients marked ** are significant at
the 95% level and * are significant at the 90% level (t values are in
brackets under each coefficient).

Table 5. Panel results for the log difference of house prices--boom
countries--leveraged coefficient for booms

Estimation period,                 Leveraged            Leveraged
1982Q1-2013Q4                   coefficient for      coefficient for
                                     period               period
                               1985Q1-1989Q4 and      1985Q1-1989Q4
                                 2002Q1-2006Q4

Log difference of RPDI           0.10 *    (1.9)      0.22 **   (3.3)
Difference of real long rate     0.0036 ** (2.4)      0.0034 ** (2.0)
Log difference of house          0.099 **  (2.2)      0.076     (1.5)
  prices (-1)
Log of house prices (-1)         0.0016    (0.6)      0.0047    (1.5)
Log of RPDI(-I)                  0.002     (0.8)     -0.00089   (0.2)
Real long rate (-1)             -0.00012   (0.3)     -0.00048   (0.6)
Population 20-39 as share        0.048 *   (1.7)      0.047     (1.1)
  of total (-1)
Log stock of housing (-1)       -0.0025    (1.4)      0.00068   (0.2)
Difference of unemployment       0.0032    (1.0)     -0.0016    (0.3)
  rate
Unemployment rate (-1)           0.00033   (1.1)      0.00047   (1.3)
Log difference of real           0.014     (0.6)      0.023     (0.9)
  gross financial wealth
Log of real gross financial     -0.0018    (0.6)     -0.0072 *  (1.7)
  wealth (-1)

Estimation period,                 Leveraged
1982Q1-2013Q4                   coefficient for
                                     period
                                 2002Q1-2006Q4

Log difference of RPDI           -0.083    (1.0)
Difference of real long rate      0.00099  (0.3)
Log difference of house           0.015    (0.2)
  prices (-1)
Log of house prices (-1)         -0.015 *  (1.9)
Log of RPDI(-I)                   0.0041   (1.1)
Real long rate (-1)              -0.0023   (1.0)
Population 20-39 as share         0.064    (1.5)
  of total (-1)
Log stock of housing (-1)        -0.0036   (0.9)
Difference of unemployment        0.0032   (0.7)
  rate
Unemployment rate (-1)           -0.00041  (0.5)
Log difference of real           -0.0078   (0.2)
  gross financial wealth
Log of real gross financial       0.00091  (0.1)
  wealth (-1)

Notes: (-1) indicates a first lag. Boom countries for both recent
cycles are the UK, US, France, Canada, Italy, Spain, the Netherlands,
Belgium, Ireland, Finland and Sweden. Estimated using fixed effects
and cross-section weights. Coefficients marked ** are significant at
the 95% level and * are significant at the 90% level (t values are in
brackets under each coefficient). Coefficients shown in table 4 are
also included but not reported.

Table 6. Panel results for the log difference of house prices--boom
countries--adding debt variables

                                  All              Pre-1982

Proxy for log difference
  of real household debt     0.092 ** (11.0)   0.11 ** (4.9)
Log of real household
  debt(-1)                  -0.0022   (0.9)    0.0082  (0.2)

                               1982-1997          1998-2013

Proxy for log difference
  of real household debt     0.07 ** (5.5)      0.1 ** (6.4)
Log of real household
  debt(-1)                  -0.0047  (0.8)     -0.0046 (0.8)

                               1982-2013

Proxy for log difference
  of real household debt     0.088 ** (9.1)
Log of real household
  debt(-1)                  -0.004 *  (1.7)

Notes: (-1) indicates a first lag. Boom countries for both recent
cycles are the UK, US, France, Canada, Italy, Spain, the Netherlands,
Belgium, Ireland, Finland and Sweden. Estimated using fixed effects
and cross-section weights. Coefficients marked ** are significant at
the 95% level and * are significant at the 90% level, (t values are in
brackets under each coefficient) Coefficients shown in table 4 are
also included but not reported.

Table 7. Panel results extended equation--boom countries--leveraged
coefficients for booms and aftermaths

Estimation period,               Leveraged            Leveraged
1982Q1-2013Q4                 coefficient for      coefficient for
                                  periods               period
                               1985Q1-1989Q4        1985Q1-1989Q4
                             and 2002Q1-2006Q4

Log difference of real
  liabilities (proxy)        0.034 *    (1.7)     0.028      (1.3)
Log real liabilities (-1)    0.00053 ** (3.6)     0.00071 ** (3.6)

Estimation period,               Leveraged            Leveraged
1982Q1-2013Q4                 coefficient for      coefficient for
                                   period              periods
                               2002Q1-2006Q4        1990Q1-1994Q4
                                                  and 2007Q1-2011Q4

Log difference of real
  liabilities (proxy)        -0.0014  (0.1)        0.016   (0.7)
Log real liabilities (-1)    -0.00012 (0.7)       -9.8E-05 (0.7)

Estimation period,               Leveraged            Leveraged
1982Q1-2013Q4                 coefficient for      coefficient for
                                   period               period
                               1990Q1-1994Q4        2007Q1-2011Q4

Log difference of real
  liabilities (proxy)        0.061 *   (1.8)       0.045   (1.3)
Log real liabilities (-1)    0.00033 * (1.6)      -0.00016 (0.8)

Notes: (-1) indicates a first lag. Boom countries for both recent
cycles are the UK, US, France, Canada, Italy, Spain, the Netherlands,
Belgium, Ireland, Finland and Sweden. Estimated using fixed effects
and cross-section weights. Coefficients marked ** are significant at
the 95% level and * are significant at the 90% level (t values are in
brackets under each coefficient). Coefficients shown in table 4 are
also included but not reported.
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有