Research of vibrations in induction machines during transient processes using a ferraris sensor/Indukciniu masinu vibraciju pereinamuju procesu metu tyrimas ferrario jutikliu.
Hantel, P. ; Spruogis, B. ; Turla, V. 等
1. Introduction
For root cause analysis it is necessary to measure the real input
to a mechanical drive system. Induction machines are known for causing
torsional vibration problems during start up, reversal or other
transient phenomena [1]. As to the fact that the electrical torque of an
induction machine is not able to be measured by the electrical units of
current and voltage, the only possibility is to measure the shaft torque
and the angular acceleration [2, 3].
According to Newton's second law of motion "the
acceleration of an object is proportional to the forces applied",
the equation for the flywheel mass [[THETA].sub.1] (Fig. 1) is as
follows:
[[THETA].sub.1][[??].sub.1](t)= [M.sub.e](t) - [M.sub.s](t), (1)
with [M.sub.e](t) the electrical torque of the induction machine
caused by the electromagnetic field in the air gap. [M.sub.s](t) is the
shaft torque, which is characterized by the spring- (c) and damping (k)
factor of the shaft according to:
[M.sub.s] = c ([[alpha].sub.2] (t) - [[alpha].sub.1] (t)) + k d/dt
([[alpha].sub.2] (t) - [[alpha].sub.1] (t)). (2)
[FIGURE 1 OMITTED]
Under the precondition, that the damping is very low the damping
torque:
[M.sub.d] = k d/dt ([[alpha].sub.2] (t) - [[alpha].sub.1] (t)), (3)
can be neglected and dynamic torque of the electrical machine can
be measured by the difference of the angles of [[alpha].sub.2] (t) -
[[alpha].sub.1] (t) and the acceleration [[??].sub.1] (t) of
[[THETA].sub.1] [4, 5]:
[M.sub.e] = c([[alpha].sub.2] (t) - [[alpha].sub.1] (t)) +
[[THETA].sub.1] [[??].sub.1] (t). (4)
2. Measurement principles for the angular acceleration
Acceleration sensors are well known for linear accelerations. The
sensor market for angular acceleration sensors is very small. Two basic
principles exist.
Fig. 2 shows the first principle of two linear acceleration sensors
measuring the absolute angular acceleration.
[FIGURE 2 OMITTED]
The angular acceleration is given by Eq. (5):
[??](t) = r [a.sub.T1] (t) + r [a.sub.T2] (t). (5)
This configuration with two linear acceleration sensors causes
different problems:
* at a constant speed the sensitivity of the sensor for lateral
acceleration produces a constant signal caused by the centrifugal force
at [??] (t) = 0;
* the power supply for the sensors and the measurement signal is
difficult to handle at higher speeds;
* the adjustment of the sensors on the radius r and the mechanical
differences of two sensors cannot by 100% compensated.
The second principle is shown in Fig. 3.
A constant magnetic field induces an electric field strength in a
conductible cylinder rotating at constant speed according to the law of
electromagnetic induction:
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (6)
[FIGURE 3 OMITTED]
This electric field causes a current I in the conductible cylinder
with a constant magnetic flux [PHI] at constant speed [omega]. When the
speed [omega](t) changes, the flux [PHI](t) changes accordingly and
induces a voltage [U.sub.i](t) in the induction coil according equation:
[U.sub.i](t) = d/dt [PHI](t). (7)
As the flux [PHI](t) is proportional to the current I and I is
proportional to [[??].sub.i] which is proportional to [omega](t)
according Eq. 6, the induced voltage in the coil is proportional to the
angular acceleration [??](t):
[U.sub.i](t) = d/dt [PHI](t) ~ d/dt [omega](t) = [??](t). (8)
This principle is named Ferraris principle according to the Italian
Ingenieur Galileo Ferraris.
The cylinder is coupled to the end of the shaft and is the only
rotating part of the sensor. So the signal for the angular acceleration
can be picked up from the static coil. The sensitivity of the Ferraris
sensor is typical 0.1 - 0.01 mV/rad/[s.sub.2].
To calibrate a Ferraris sensor a special test rig is necessary, see
Fig. 4.
[FIGURE 4 OMITTED]
The aluminum cylinder of the Ferraris sensor is coupled to a highly
dynamic DC motor with a disk-shaped rotor. The rotor is a disk which is
a printed circuit board without any iron. So current of the motor is
proportional to the torque without any distortion and can be used as
angular acceleration reference.
With a frequency analyzer the frequency response (amplitude, phase)
of the Ferraris sensor can be measured, see Fig. 5.
[FIGURE 5 OMITTED]
The sensitivity is 0.017 mV/rad/[s.sub.2] (0 dB) and the resolution
is 1 rad/[s.sub.2]. The cut-off frequency is at 1.2 kHz (-3 dB). The
phase in that frequency range is linear and the delay time:
[t.sub.d] = d/dt [empty set] = 0.12ms = const, (9)
is with 0.12 ms constant.
3. Torque measurement with resistance strain gauges
To determine the electrical torque according to Eq. (4) the
displacement between the inertia of the rotor ([[THETA].sub.1]) and the
flywheel ([[THETA].sub.2]) has to be determined. This has been done by
four resistance strain gauges which have been glued under 45[degrees] on
the shaft [6]. The four strain gauges are electricaly coupled to a
wheatstone bridge (Fig. 6).
[FIGURE 6 OMITTED]
A carrier frequency amplifier was used to supply the wheatstone
bridge. The sensitivity of the torque sensor is 0.482 V/Nm. The cut-off
frequency of the carrier frequency amplifier is at 2 kHz (-3 dB) and the
delay time is 0.3 ms.
4. Measuring the electrical torque [M.sub.e]
To add signals in a measuring chain the delay time of each sensor
has to be taken into account. As shown in Fig. 7 the lead time of a
sinusidial signal is different, depending on the delay time of each
measuring chain.
In the angular acceleration chain the phase shift after the DC
amplifier is 46.8[degrees]. If the signals of the angular acceleration
and the shaft torque would be added at that point, the result for the
electrical torque would not be correct, because the shaft torque
measurement via the elongation e has a phase shift of 108[degrees].
Therefore an electrical all pass module is necessary to shift the phase
of the angular acceleration signal from 46.8[degrees] up to
108[degrees]. The amplitude of the signal is not modified by an all pass
module [7].
[FIGURE 7 OMITTED]
After the calibration with the all pass module the two signals can
be added by a normal operational amplifier.
The sensitivity for the electrical torque is 40 mV/Nm. The
frequency range is determined by the Ferraris sensor with a cut-off
frequency of 1.2 kHz. The delay time of 0.3 ms is determined by the
carrier frequency amplifier.
5. Electrical torque measurements compensated by the angular
acceleration
[FIGURE 8 OMITTED]
Fig. 8 shows a 3-phase 1.8 kW induction machine with a squirrel
cage rotor that is coupled with a flywheel via a steel shaft.
This rig is very close to the representative model in Fig. 1. As
there is no clutch with damping element the damping factor is with D =
0.007 very low and the precondition of Eq. 3 is fulfilled.
By variation of the diameter of the shaft and the flywheel mass it
is possible to realize different resonance frequencies (fundamental mode
of vibration), i.e. 33.5 Hz and 147 Hz. The flywheel mass of the
clamping element is very small. It causes a resonance frequency of 1180
Hz (first harmonics) [8,9].
To show the compensation an impact pulse is given to the system
(Fig. 9).
The electrical torque [M.sub.e] follows exactly the reference
torque [M.sub.Ref] while the shaft torque [M.sub.w] and the angular
acceleration signal are alternating with the resonance frequency of the
mechanical system. The addition of both signals is zero what shows very
clearly the compensation effect [10].
[FIGURE 9 OMITTED]
[FIGURE 10 OMITTED]
Fig. 10 shows the electrical torque during run-up of the induction
machine (Fig. 8) with the compensation method.
After switch on the amplitudes of the electrical torque [M.sub.E]
are with 36 Nm up to 6 times higher than the nominal torque [M.sub.Y] =
6 Nm of the induction machine. This forces the shaft torque to
amplitudes up to 7 times of the nominal torque [M.sub.Y] (Fig. 11).
After about 1.8 seconds the resonance frequency of the system is
excited by the induction machine. This phenomenon is to be explained by
parametric excitation of the induction machine [1].
The Fast Fourier Transformation (FFT) of electrical torque signal
(Fig. 12) shows higher amplitudes in the range of 45 Hz to 50 Hz and
also around 33 Hz. The amplitudes of the torsional oscillator become up
to 42 Nm so that the loop back into the electrical torque, which can be
seen in Fig. 10.
Another very interesting experiment, the reversing, reveals
additional alternating torques in the electrical torque of the induction
machine [11, 12].
[FIGURE 11 OMITTED]
[FIGURE 12 OMITTED]
[FIGURE 13 OMITTED]
At the reversing two phase of the 3-phase power supply are swapped
at full speed of 3000 rpm. When swapping two phases, the rotating
electromagnetic field in the induction machine changes its direction and
also does the electrical torque. This means, that the electrical torque
works against the turning flywheel mass and brings it into the opposite
direction with -3000 rpm (Fig. 13).
The electrical torque during reversing is shown in Fig. 14. The
swapping of the electrical phases causes a peak in the electrical torque
of about 25 times of the nominal torque (6 Nm). The time signal shows
alternating torques with a changing frequency.
[FIGURE 14 OMITTED]
[FIGURE 15 OMITTED]
[FIGURE 16 OMITTED]
To analyze the electrical torque, the signal has been divided into
64 windows (Fig. 14). For each time window a FFT has been performed. All
64 spectra have been plotted as can be seen in Fig. 15.
The sweep of the alternating torque starts with about 1300 Hz, goes
down to 0 Hz and increases up to
about 1500 Hz.
This sweep passes two times the resonance frequency ([F.sub.0] =
147 Hz) of the torsional vibration system and excites it two times as it
can be clearly seen in Fig. 16.
6. Conclusions
To measure the input torque of a torsional vibration system it is
necessary to take the vibrations of the rotor mass [[THETA].sub.1] into
account. It is not sufficient only to measure the shaft torque. The
shaft torque has to be compensated by the acceleration of the rotor
mass. To get the exact electrical torque the delay time of the measuring
chain has to be taken into account (Fig. 7).
The electrical torque shows several alternating vibrations in its
torque signal, which causes high resonance excitations in low damped
systems.
cross ref http:// dx.doi.org/10.5755/j01.mech.19.6.5985
Received December 06, 2011
Accepted October 10, 2013
References
[1.] Hantel, P. 1986. Theoretische und experimentelle
Untersuchungen von transienten Vorgangen bei Asynchronmaschinen in
schwach gedampften Antriebssystemen, Dissertation, RWTH Aachen.
[2.] Juzenas, E.; Jonusas, R.; Juzenas, K. 2008. Research of
complex rotary systems vibrocondition based on analysis of dinamical
processes and spectrum of vibrations, Mechanika 1(69): 42-45.
[3.] Vosylius, M.; Didziokas, R.; Mazeika, P.; Barzdaitis, V. 2008.
The rotating system vibration and diagnostics, Mechanika 4(72): 54-58.
[4.] Jonusas, R.; Juzenas, E.; Juzenas, K. 2010. Analysis of some
extreme situations in exploitation of complex rotary systems, Mechanika
1(81): 53-57.
[5.] Hantel, P. Kompensierter Drehbeschleunigungs- messer fur
exzentrisch laufende Wellen. TM 54 (87) 10 S. 389-394.
[6.] Bogdevicius, M.; Spruogis, B.; Turla, V. 2004. A dynamic model
of rotor system with flexible link in the presence of shafts
missalignment, ISSN 0039-2480 Journal of Mechanical Engineering,
Slovenia, 50: 598612.
[7.] Skrickij, V.; Bogdevicius, M. 2010. Vehicle gearboxdynamics:
centre distance influence on mesh stifness and spur gear dynamics,
Transport 25(3): 278-286. http://dx.doi.org/10.3846/transport.2010.34.
[8.] Hantel, P.; Bogdevicius, M.; Spruogis, B.; Turla, V.; Jakstas,
A. 2008. Analysis of parametric excited vibrations of drive shafts
caused by induction machines, Mechanika 4(72): 48-52.
[9.] Spruogis, B.; Turla, V. 2006. A damper of torsional vibrations
and investigation on its efficiency, ISSN 0039-2480 Journal of
Mechanical Engineering, Slovenia 52(4): 225-236.
[10.] Jakstas, A.; Spruogis, B.; Turla, V. 2007. Vibration dampers
for transmission of mechatronic systems, Journal of Vibroengineering
9(4): 41-44.
[11.] Hantel, P.; Bogdevicius, M.; Spruogis, B.; Turla, V.;
Jakstas, A. Research of parametric vibrations of drive shafts in
induction machine. In: Proceedings of VI Triennial International
Conference HEAVY MACHINERY HM 2008, June 24-29, 2008, Kraljevo, Republic
of Serbia, ISBN 978-86-82631-45-3, E.29E.34.
[12.] Spruogis, B.; Turla, V.; Jakstas, A.; Bogdevicius, M.;
Hantel, P. 2009. Theory and Application of the Devices of Transmission
and Stabilization of Rotary Motion: Monograph, Vilnius: Technika 479 p.
(in Lithuanian).
P. Hantel, Hantel Consulting, Hornhang 13, Aachen, Germany, E-mail:
peter.hantel@hantel-consulting.de
B. Spruogis, Vilnius Gediminas Technical University, Plytines 27,
10105 Vilnius-16, Lithuania, E-mail: bsp@vgtu.lt
V. Turla, Vilnius Gediminas Technical University, Basanaviciaus 28,
03224 Vilnius-6, Lithuania, E-mail: Vytautas.Turla@vgtu.lt
A. Jakstas, Vilnius Gediminas Technical University, Basanaviciaus
28, 03224 Vilnius- 6, Lithuania, E-mail: arunas.jakstas@vgtu.lt