Investigation of multilayered packages resistance to free fall on the solid surface/Daugiasluoksniu pakuociu atsparumo kritimui ant kieto pavirsiaus tyrimas.
Gegeckiene, L. ; Kibirkstis, E. ; Miliunas, V. 等
1. Introduction
Since the package is designed to store, protect, manage, distribute
and represent the product, but its most important purpose--to protect,
that the product would not be damaged or (and) lost. In order to reduce
the quantity of materials and waste, the entire system must be optimized
the part of which is the package [1, 2].
In many cases packaging became the necessary element of production
and in their realization process. At present many products are packed in
flexible and rigid plastic packaging, which may well protect the product
against the environmental impact and is relatively light, durable and
cheap, but the use of the paper and cardboard in packaging as cheap and
"green" material is still unabated [1-4]. A number of papers
analyzing the dynamics of these packages have been published. The aim of
paper [5] was to carry out tests in order to determine the effect of the
graphical paperboard package bottom construction and bottom dimensions
on the package resistance to fall shock loads. The obtained
investigation results show that for the package edge deformations, when
a package is dropped onto the bottom plane, the drop height has no
effect. When a package falls onto the long edge, the edge deformation
increases with the increasing drop height. Height had the greatest
impact on the package when the package fell onto the short bottom edge
when 67% of tested packages bottom broke.
Strength and fracture parameters are very important, because during
exploitation damage gradually appears in the constructions materials and
results their fracture. So, in recent years, there have been a lot of
requirements for ecological and performance criteria of packages. In
addition not only the static but also and dynamics loads, when the
package during the transportation could fall or could effected by
vibrations [6-8].
Other authors [9-15] studied the effect of the shape of the
protective packaging materials inside a corrugated paperboard box on the
loads caused by falling shocks and caused by others dynamics loads.
During the tests it was observed how many goods were damaged or the
deformations or cracks were measured, or visual assessment was performed
according to relevant criteria.
High-quality products are competitive only if it is properly
packaged. That's why the matter under investigation are importance
and topical.
So the aim of this present study is to estimate the characteristics
of deformation and behaviour of multilayered packages free fall on the
solid surface.
2. Experiment equipment and method
The combined package, used for packaging of food products, usually
consists of paperboard, coated with the layers of polyethylene (Fig. 1).
The inner polyethylene layer serves as a container for liquids products,
also this layer allows to weld on and to seal the package by filling
with the liquid product. The outer polyethylene layer is thinner, and
its purpose is to prevent the penetration of moisture and bacteria into
the paperboard. Also it is used as the layer for welding for the final
formation of package. If the packed product is used for long-term
storing, between the inner polyethyelene layer and paperboard, the layer
of aluminium is placed. This layer is a reliable barrier to bacteria and
other impurities, but also prevents from the light penetration. Then the
product is packed in such bacteria impermeable sterile package under
aseptic conditions in the absence of microorganisms inside the package
and there is no possibility for them to penetrate from the outside, the
packed products can be stored and transported in a long time without
refrigeration [3-4].
[FIGURE 1 OMITTED]
The volume of packages used for the tests was 0.5 1, 1 1 and 2 1.
These types of packages are widely used for various beverage packaging.
The tests of multilayered packages were carried out at the
temperature 20 [+ or -] 2[degrees]C and air humidity 65 [+ or -] 2%.
For the tests of the package resistance to free fall on the solid
surface the special stand was used, which outer view is presented in
Fig. 2, a and the simplified scheme in Fig. 2, b. The sequence of the
tests is presented in Fig. 3.
During the test, the multilayered package was fixed with the thread
in a special stand, and then it fell on supporting plate 2, in which the
sensor 7 was build-in. The force impulse, which was measured by the
measurement equipment, presented in Fig. 2, a, was showed on the screen
of personal computer. Impulse was calculated according to the general
formulas
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1)
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
The deformation process of the package was captured by high--speed
camera 8, and the effect of shock load to the package was recorded by
the measurement equipment.
3. Results and discussion
The graphs of shock load variation when the multilayered package
falls from 1 and 0.5 m height are presented in Fig. 4. The images of
package deformation process recorded in a high-speed video camera are
presented in Fig. 5.
[FIGURE 4 OMITTED]
[FIGURE 5 OMITTED]
From the first graph in Fig. 4 it can be seen, that, the shock
load, when the 2 1 package falls onto the bottom from 1 m ~ 1.4 kN, and
when the bottom edge is inclined by 45[degrees] ~ 900 N. When 1 1
package falls from 1 m height on the bottom, it cracks through the
adhesive joint (Fig. 5, a). The averaged length of four deformed package
edges [approximately equal to] 0.406 x[10.sup.-2] m. When the 2 1
package falls from 1 m height on the edge, inclined by 45[degrees], the
averaged length of deformed edge is [approximately equal to] 0.626
x[10.sup.-2] m.
The shock load, when 1 1 package falls on the bottom from 1 m
height ~ 808 N, and when the bottom edge is inclined by 45[degrees] ~
610 N. The averaged length of four deformed package edges ~ 0.01
x[10.sup.-2] m, so from the obtained results it can be argued, that the
fall from 1 m height to such volume package doesn't affect the
resistance to shock loads because the deformations of edges are even
smaller as mentioned above. When the package falls on the edge, inclined
by 45[degrees], no essential deformations were determined.
The shock load, when 0.5 1 package falls on the bottom from 1 m
height ~ 295 N, and when the bottom edge is inclined by 45[degrees] ~
340 N. The averaged length of four deformed package edges [approximately
equal to] 0.002 x[10.sup.-2] m, so from the obtained results it can be
seen that the drop from 1 m height of 0.5 1 package on the bottom
doesn't have influence. When the 0.5 1 package falls from 1 m
height on the edge, inclined by 45[degrees], the averaged length of
deformed edge is [approximately equal to] 0.055 x[10.sup.-2] m. It can
be argued (Fig. 5, b), that the fall from 1 m height on the edge is
dangerous for the 0.5 1 package, because the deformations are quite
large.
The averaged length of four deformed package edges, when the 2 1
package falls from 0.5 m height on the bottom is [approximately equal
to] 0.491 x[10.sup.-2] m. These results show, that the averaged length
of four deformed package edges don't differ significantly from the
averaged length, when 2 l package falls from 1m height, but in this
case, the package doesn't cracks through adhesive joints. When the
2 1 package falls from 0.5 m height on the edge, inclined by
45[degrees], the averaged length of deformed edge is [approximately
equal to] 0.553 x[10.sup.-2] m. So it can be argued, that the fall from
0.5 and from 1 m height on the edge, inclined by 45[degrees] for 2 1
package is not so dangerous, because the deformations aren't so
large.
When the 1 1 package falls from 0.5 m height on the bottom, the
averaged length of four deformed package edges [approximately equal to]
0.002 x[10.sup.-2] m, so the obtained results show that the fall of 1 1
package from 0.5 (analogical as from 1 m) height doesn't have
significant influence. When the 1 l package falls from 0.5 m height on
the edge, inclined by 45[degrees], the averaged length of deformed edge
is [approximately equal to] 0.025 x[10.sup.-2] m, so in this case the
deformed edge of 1 1 package is quite resistant for such shock.
It was determined, that, the averaged length of four deformed
package edges is [approximately equal to] 0.001 x[10.sup.-2] m, when the
0.5 1 package falls from 0.5 m height on the bottom. So this case of the
fall also doesn't influence the resistance of this volume package.
When the 0.5 1 package falls from 0.5 m height on the edge, inclined by
45[degrees], the averaged length of deformed edge is [approximately
equal to] 0.075 x[10.sup.-2] m. The obtained results show, that the fall
of 0.5 1 package from 0.5 height on the edge, inclined by 45[degrees] is
also dangerous as the fall from 1 m height.
4. Conclusions
1. It was obtained, that the drop from 1 m and 0.5 m height on
solid surface of 1 1 and 0.5 1 packages doesn't have an influence.
The packages deform slightly, so this height are not dangerous for them.
2. The deformations of 0.5 1 package are quite large, when the
package falls from 0.5 m and 1 m height on the edge inclined by
45[degrees]. Such package becomes no longer suitable for further usage.
3. The experiment results showed, that deformations of multilayered
packages highly depend on what angle and from what height it fall.
4. It can be argued, that the fall of 2 1 package on the bottom is
more dangerous than the fall on the edge. In comparison: the shock load
then package falls from 1 m height on the bottom ~ 808 N, and on the
edge inclined by 45[degrees] ~ 610 N.
5. The comparison between different size packages from different
height under the same conditions, it was obtained, that the force
impulse is smaller, when the package falls on the edge, but it causes
larger deformations.
6. The analysis of results showed, that the increase of package
volume, the more difficult it can withstand the shock load, it cracks
through the adhesive joint.
7. The obtained testing results can be applied in the process of
packages designing.
Received November 25, 2010
Accepted April 15, 2011
References
[1.] Danys, J.; Lebedys, A. 2004. Foods Packaging development
trends in Europe, Food chemistry and technology 38(1). Kaunas: 15-26 (in
Lithuanian).
[2.] Directive 2004/12/EC of the European Parliament and of the
Council of 11 February 2004 amending Directive 94/62/EC on packaging and
packaging waste// Official Journal of the European Union. No. L 47,
18/02/2004.
[3.] Flanderka, F.; Herodin, B. Effective packaging effective
prevention". http://www.proeuropecongress.com/pdf/prevention.pdf.
[4.] Thoren A.; Vinberg B. 2000. Pocket Book of Packaging.
Packforsk, Kista. 120p.
[5.] Bivainis, V.; Kibirkstis, E.; Lebedys, A. 2010, Experimental
studies on drop test of filled coated graphical board packages.
Mechanika 2010: proceedings of the 15th international conference, April
8-9, 2010, Kaunas, Lithuania: 75-79.
[6.] Ziliukas, A.; Surantas, A.; Ziogas, G. 2010. Strength and
fracture criteria application in stress concentrators areas, Mechnika
3(83): 17-20.
[7.] Daunys, M.; Cesnavicius, R. 2009. Low cycle stress structures
and fatigue under tension-compression and torsion, Mechnika 6(80): 5-11.
[8.] Miliunas, V.; Kibirkstis, E.; Dagyte, I.; Bivainis, V.;
Kulaityte, V. 2010. Investigation of packages and their structure
elements. Mechanika 2010: proceedings of the 15th international
conference, April 8-9, 2010, Kaunas, Lithuania: 320-324.
[9.] Sharan, G.; Srivastav, S.; Rawale, K. P.; Dave, U. 2009.
Development of corrugated fibre board cartons for long distance
transport of tomatoes in India, International Journal for Service
Learning in Engineering. Penn State University, vol. 4, no 1: 31-43.
[10.] Prabakaran, B. Naganathan, Jorge, A. 1995. Marcondes. Effect
of specimen size on test results to determine cushioning characteristics
of corrugated fibreboard, Packaging Technology and Science 8(2): 85-95.
[11.] Volkovas, V.; Slavickas, E.S.; Maciulis, D. 2007. Shock and
vibration testing of TV tare's box. Mechanika 2007: proceedings of
the 12th international conference, April 5, 2007, Kaunas University of
Technology, Lithuania: 280-284.
[12.] Mourad, A.; Garcia, E.; Gustavo, Braz V.; Von Zuben, F. 2008.
Influence of recycling rate increase of aseptic carton for long-life
milk on GWP reduction. Resources, Conservation and Recycling. 52:
678-689.
[13.] Kabelkaite, A.; Miliunas, V.; Gegeckiene, L.; Kibirkstis, E.;
Ragulskis, L.; Volkovas, V. 2010. Investigation of packages resistance
under dynamics loads, Journal of Vibroengineering 12(4): 566-572.
[14.] Sek, M.A. 1996. A modern technique of transportation
simulation for package performance testing, Packaging Technology and
Science 9: 327-343.
[15.] Garcia-Romeu-Martinez, M.A.; Sek, M.A.; Cloquell-Ballester,
V.A. 2009. Effect of initial precompression of corrugated paperboard
cushions on shock attenuation characteristics in repetitive impacts,
Packaging Technology and Science 22: 323-334.
L. Gegeckiene, Kaunas University of Technology, Studentu 56, 51424
Kaunas, Lithuania, E-mail: laurosius@gmail.com
E. Kibirkstis, Kaunas University of Technology, Studentu 56, 51424
Kaunas, Lithuania, E-mail: edmundas.kibirkstis@ktu.lt
V. Miliunas, Kaunas University of Technology, Studentu 56, 51424
Kaunas, Lithuania, E-mail: valdas.miliunas@ktu.lt
V. Volkovas, Technological System Diagnostic Institute, Kaunas
University of Technology Kestucio 27, 44312 Kaunas, Lithuania,
E-mail: vitalijus.volkovas@ktu.lt
Table 1
The tests results of multilayered packages resistance to free fall on
the solid surface
Package Package Package Package Package
code * volume, 1 mass, kg height H, x bottom
[10.sup.-2] m width B,
[10.sup.-2] m
1.d.1 2 2.094 2.65 0.9
2.d.1 2 2.094 2.65 0.9
3.d.1 2 2.094 2.65 0.9
1.k.1 2 2.094 2.65 0.9
2.k.1 2 2.094 2.65 0.9
3.k.1 2 2.094 2.65 0.9
1.d.1 1 1.047 1.925 0.7
2.d.1 1 1.047 1.925 0.7
3.d.1 1 1.047 1.925 0.7
1.k.1 1 1.047 1.925 0.7
2.k.1 1 1.047 1.925 0.7
3.k.1 1 1.047 1.925 0.7
1.d.1 0.5 0.524 0.94 0.7
2.d.1 0.5 0.524 0.94 0.7
3.d.1 0.5 0.524 0.94 0.7
1.k.1 0.5 0.524 0.94 0.7
2.k.1 0.5 0.524 0.94 0.7
3.k.1 0.5 0.524 0.94 0.7
1.d.0 2 2.094 2.65 0.9
2.d.0 2 2.094 2.65 0.9
3.d.0 2 2.094 2.65 0.9
1.k.0 2 2.094 2.65 0.9
2.k.0 2 2.094 2.65 0.9
3.k.0 2 2.094 2.65 0.9
1.d.0 1 1.047 1.925 0.7
2.d.0 1 1.047 1.925 0.7
3.d.0 1 1.047 1.925 0.7
1.k.0 1 1.047 1.925 0.7
2.k.0 1 1.047 1.925 0.7
3.k.0 1 1.047 1.925 0.7
1.d.0 0.5 0.524 0.94 0.7
2.d.0 0.5 0.524 0.94 0.7
3.d.0 0.5 0.524 0.94 0.7
1.k.0 0.5 0.524 0.94 0.7
2.k.0 0.5 0.524 0.94 0.7
3.k.0 0.5 0.524 0.94 0.7
Package Package Averaged Force Drop of
code * bottom length of impulse, N height, m
Length, L, deformed
[10.sup.-2] m package edges,
x [10.sup.-2] m
1.d.1 0.9 0.392 1260 1
2.d.1 0.9 0.389 1450
3.d.1 0.9 0.438 1320
1.k.1 0.9 0.63 873
2.k.1 0.9 0.604 899
3.k.1 0.9 0.645 883
1.d.1 0.7 0.004 808
2.d.1 0.7 0.018 815
3.d.1 0.7 0.009 835
1.k.1 0.7 0.05 543
2.k.1 0.7 0.067 655
3.k.1 0.7 0.059 635
1.d.1 0.7 0.002 294
2.d.1 0.7 0.001 283
3.d.1 0.7 0.002 289
1.k.1 0.7 0.147 339
2.k.1 0.7 0.132 397
3.k.1 0.7 0.151 386
1.d.0 0.9 0.492 685 0.5
2.d.0 0.9 0.494 791
3.d.0 0.9 0.488 660
1.k.0 0.9 0.57 344
2.k.0 0.9 0.548 401
3.k.0 0.9 0.541 400
1.d.0 0.7 0.002 492
2.d.0 0.7 0.001 501
3.d.0 0.7 0.004 505
1.k.0 0.7 0.017 214
2.k.0 0.7 0.024 271
3.k.0 0.7 0.035 293
1.d.0 0.7 0.001 200
2.d.0 0.7 0.001 255
3.d.0 0.7 0.001 267
1.k.0 0.7 0.069 209
2.k.0 0.7 0.078 197
3.k.0 0.7 0.078 219
Package Orientation package
code * static state
before drop
1.d.1 Package bottom
2.d.1 plane is horizontal
3.d.1
1.k.1 Package bottom
2.k.1 edge is inclined
3.k.1 by 45[degrees]
1.d.1 Package bottom
2.d.1 plane is horizontal
3.d.1
1.k.1 Package bottom
2.k.1 edge is inclined
3.k.1 by 45[degrees]
1.d.1 Package bottom
2.d.1 plane is horizontal
3.d.1
1.k.1 Package bottom
2.k.1 edge is inclined
3.k.1 by 45[degrees]
1.d.0
2.d.0 Package bottom
3.d.0 plane is horizontal
1.k.0 Package bottom
2.k.0 edge is inclined
3.k.0 by 45[degrees]
1.d.0 Package bottom
2.d.0 plane is horizontal
3.d.0
1.k.0 Package bottom
2.k.0 edge is inclined
3.k.0 by 45[degrees]
1.d.0 Package bottom
2.d.0 plane is horizontal
3.d.0
1.k.0 Package bottom
2.k.0 edge is inclined
3.k.0 by 45[degrees]
* -1.d.1 -1-number of sample; d--state of fall; 1-drop height.