Experimental investigation of stresses in sand during the installation and loading of the short displacement pile/Itempiu, sukeltu smelio pagrinde ispaudziant ir apkraunant trumpa spraustini pamata, eksperimentinis tyrimas/Isu iedzenamo palu iedzilinasanas un noslogosanas radito spriegumu eksperimentala izpete smilsaina grunti/Liivas tekkivate pingete uuringud luhikese vaia paigaldamise ja koormamise ajal.
Martinkus, Vaidas ; Norkus, Arnoldas ; Statkus, Tautvydas 等
1. Introduction
The displacement pile is the oldest type of deep foundation and due
to its proven efficiency is acknowledged and often employed in
geotechnical engineering practice. But one must emphasize that despite
the wide and long-term usage in engineering practice this kind of piles,
still there are a lot of experimental, analytical and numerical
investigations (Ai, Yue 2009; Igoe et al. 2011; Krasinski 2014; Said et
al. 2009; Shelke, Patra 2011; Zhang et al. 2011; Zhang et al. 2013 and
others) where the interaction between the soil and pile is represented
differently.
The main part of the territory of Lithuania is covered by the
glacial origin soils which lie not far from the ground surface.
Therefore the short piles are one of the most common type of deep
foundations in Lithuania, and this is the reason why current
experimental inquiry is aimed to study this type of deep foundation.
Although a lot of theories, methods and techniques were developed
to predict and simulate the behaviour of displacement pile in
cohesion-less soil (Baziar et al. 2012; Berezantzev et al. 1961; Lehane
1992; McClelland 1974; Nottingham, Schmertmann 1975), the obtained
results do not fit the tests results properly.
The analysis of above mentioned references related to the principal
single pile behaviour perception, including validation of experimental
versus numerical simulation, was performed. The references inquiry
revealed that there are certain inconsistencies between numerical
simulation results and theoretical statements. The main discrepancy was
found regarding the shear stress distribution along the pile shaft.
Furthermore, no relevant tests were performed to serve for fixing and
subsequently for explaining this disagreement.
Therefore two types of specific tests were carried out. The 1st
type of tests was aimed to reveal the shear and normal stresses
distribution at displacement pile interface and the 2nd type of tests
had to explain the origin of determined particular stresses
distribution.
2. Theoretical background
It is generally accepted that the vertical load applied on top of
the pile is transmitted by the pile tip and the pile shaft (Fig. 1):
[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], (1)
where F--a vertical load applied on top of the pile; [F.sub.S]--a
portion of the load F transmitted to the ground by the pile shaft
(skin); [F.sub.b]--a portion of the load F transmitted to the pile tip;
L--the pile length; D--the pile diameter; [[tau].sub.s.i]--a shear
stress acting at skin elementary plot; [[sigma].sub.b.i]--a normal
stress acting at base (tip) elementary plot.
It is well known that the load for the bearing stratum is
transmitted progressively (during the loading process stage when the
load magnitude vary from 0 till its final magnitude F), at first through
the shaft and only after the tip is "employed", then load is
transmitted via the shaft and the tip.
The term ultimate load or bearing capacity of a single pile
indicates either the magnitude of an external load for which the
settlement of the pile increases continuously with no further increase
in load, or at which the settlement begins to increase at a rate far out
of proportion to the rate of increase of the load (Terzaghi et al.
1996). Frequently, in geotechnical practice it is not easy to determine
the ultimate load considering graph of the pile load test. Consequently,
the relative settlement of 10% of pile diameter is widely accepted, as a
criterion which helps to determine the ultimate load. The bearing
capacity is described:
[F.sub.u] = [F.sub.s,u] + [F.sub.b.u], (2)
where [F.sub.u]--the total bearing capacity or ultimate load;
[F.sub.s.u] --a shaft of bearing capacity; [F.sub.b.u]--a tip of bearing
capacity.
The classical patterns of the pile bearing stratum failure,
proposed by the different researches which were summarized by Vesic
(1967), are shown in Fig. 2.
Models, which are shown in Fig. 2, are quite conservative and
despite the long-term use they do not properly and sufficiently describe
the actual pile behaviour. Therefore the failure models improvements and
new approaches are always under development. For instance, another
approach proposed by Manandhar and Yasufuku (2012) is based on cavity
expansion theory and the failure pattern (Fig. 3).
The relevant adoption of the failure pattern is the main framework
of the theoretical bearing capacity prediction methods, which is
validated experimentally for certain types of soil. For this reason the
patterns of pile bearing stratum failure has to be chosen very
accurately.
Pile bearing capacity is determined in situ, by the static or
dynamic load tests. Alternatively it is estimated according to the field
investigation and laboratory test data (indirect method).
Generally, all the pile bearing capacity evaluation methods are
classified into three groups: theoretical, semi-empirical and empirical.
According to McClelland (1974) and many other authors the
theoretical ultimate skin friction mainly depends on lateral earth
pressure coefficient, vertical effective stresses and the surface
friction. It is expressed by:
[[tau].sub.s.u.i] = K[[sigma]'.sub.vo]tg[[delta].sub.s],
where [[tau].sub.s.u.i]--an ultimate shear stress; K--a coefficient
of lateral earth pressure; [[sigma]'.sub.vo]--vertical effective
stress in the soil; [[delta].sub.s]--a coefficient of interface
friction.
[FIGURE 1 OMITTED]
[FIGURE 2 OMITTED]
[FIGURE 3 OMITTED]
Up to now, there is no reliable and appropriate lateral earth
pressure determination method.
The one of semi-empirical methods was developed in Imperial College
of London by Lehane (1992). With this approach, efforts were made to
evaluate stress history, but this method is mainly based on cone
resistance qc. It is well known that cone penetration is indirect method
of total soil response evaluation, which actually does not fully
describe the stress state of bearing stratum. According to the mentioned
method, the ultimate shaft friction is expressing by:
[[tau].sub.s.u.i] = [[sigma].sub.rf] tg[[delta].sub.s], (4)
[[sigma].sub.rf] = [[sigma].sub.rc] + [DELTA][[sigma].sub.rd], (5)
where [[sigma].sub.rf]--the total radial effective stress;
[[sigma].sub.rc]--the radial effective stress measured after pile
installation, but before loading; [DELTA][[sigma].sub.rd]--an increment
of the radial effective stress occurring during loading process because
of the dilation effect in dense soil.
Pure empirical ultimate skin friction prediction method is based on
correlation between the shaft resistance (from the cone penetration
test) and the shaft bearing capacity. This method was proposed by
Notingham and Schmertmann (1975):
[[tau].sub.s.u.i] = [[omega]f.sub.s.i], (6)
where [omega]--the correlation factor between [[tau].sub.s.u.i] and
[f.sub.s.i]; [f.sub.s.i]--a shaft resistance determined by cone
penetration test.
The other empirical approach is based on relation between the cone
resistance and the ultimate shaft resistance, obtained by cone
penetration test (EN 19972-2007/AC:2010 Eurocode 7--Geotechnical
Design--Part 2: Ground Investigation and Testing):
[[tau].sub.s.u.i] = [[alpha].sub.s][q.sub.c.s.i], (7)
where [[alpha].sub.s]--the correlation factor between
[[tau].sub.s.u.i] and [q.sub.c.s.i]; [q.sub.c.s.i]--a single layer cone
resistance determined by cone penetration test.
Berezantzev et al. (1961) and other authors agree that theoretical
pile tip bearing capacity is expressed by:
[[sigma].sub.b.u.i]=[N.sub.q][[sigma]'.sub.vo], (8)
where [[sigma].sub.b.u.i]--the ultimate normal stress beneath pile
tip (base); [N.sub.q]--a bearing capacity factor which mainly depends on
angle of soil inner friction.
Empirical approach which is usually used to predict tip bearing
capacity in Lithuania (EN 1997-2:2007/AC:2010):
[[sigma].sub.b.u.i] = [[alpha].sub.b][q.sub.c.b], (9)
where [[alpha].sub.b]--the correlation factor between
[[sigma].sub.b.u.i] and [q.sub.c.b]; [q.sub.c.b]--an average cone
resistance beneath pile tip determined by cone penetration test, kPa.
[FIGURE 4 OMITTED]
The existence of numerous displacement pile bearing capacity
prediction methods and techniques (including the listed above) shows
that no general and relevant method has been proposed so far. Therefore
the new numerical and experimental investigations have been performed by
the different researchers to study the behaviour of single piles under
vertical load. Following Shelke and Patra (2011) the shaft friction
distribution along the pile length is parabolic, the maximum shaft
friction occurs at the middle of the pile. The shaft friction decreases
sequentially from the middle towards the pile end. The contrary concept
of the skin friction distribution was revealed for the cast-in-situ
pile, by Zhang et al. (2011, 2013). It was concluded that the shaft
friction increases at the last 5 m before the pile end. The other
researcher introduced a similar study for piles subjected by a cyclic
vertical load (Igoe et al. 2011). The study concluded that the radial
stress increases not far from the pile end.
The numerical study of pile and multi-layered soil interaction
showed smaller shaft shear stress values in the upper part of the pile,
and the greater values in the lower part of the pile (Ai, Yue 2009).
Another numerical study yielded that the radial stress increase near the
pile end (Said et al. 2009).
It is relevant to determine the actual ultimate stresses at the
pile shaft and under the tip, as well as the stresses acting at adjacent
soil in order to fully understand the pile behaviour in sands.
3. Experimental set up and methodology of tests
Two types of specific tests were carried out. The 1st type of tests
aimed to reveal the shear and normal stresses distribution at
displacement pile interface. The 2nd type of the tests aimed to identify
the radial stress patch at the soil. The model piles tests were
performed at laboratory pit. The soil volume dimensions are 7.0 mx6.0
mx5.0 m.
3.1. Soil description
The soil is even graded air-dry sand of mineral composition with
dominating quartz (Fig. 4).
The static penetration test (Fig. 5) has reported that, up to 2.8 m
from the ground surface, sand is loose and cone resistance varies within
bounds of 1.0 MPa and 5.0 MPa.
From 2.8 m to 3.2 m lies medium dense sand, and this layer cone
resistance is >5.0 MPa, but <10.0 MPa. At deeper stratums lies
dense sand of which cone resistance is >10.0 MPa.
3.2. Description of the 1st test
Hydraulic jack system with 1200 kN capacity was used for inserting
the model piles into a certain depth. The length of the 1st steel model
pile is 2.25 m, and the diameter is
Fig. 4. Soil particle size grading curve 0.324 m. The system
consisting of 4 vibrating wire load cells and the Micro-1000 Datalogger
(Model 8021) for the measuring of the forces were employed. The main
idea of the model pile construction is capability to measure the shear
and the normal stresses at particular pile surface areas. In general,
with the 1st model pile during installation and loading process are
measured shear stresses at two certain pile skin and normal stresses at
two particular pile base areas. A principal scheme of the tested model
pile is presented in Fig. 6. The certain areas of model pile surface are
marked in different hatches.
The certain number of preparation tests were made to calibrate and
verify the reliability of the measurement system and the model pile
construction, as well as for adjusting a loading framework. The
conditions and procedures of the main test are described below.
At 1st stage of the test the model pile was pushed in to 1.1 m
depth using the hydraulic jacks. Then the pile was unloaded. After 2
days the static vertical load test was performed and detailed short
displacement pile response was obtained. The next day the pile was
pushed in to 1.4 m depth, and few days later the static vertical load
test was performed again. The both static load tests were carried out in
pursuance of special code (ISO/DIS 22477-1:2005 Geotechical
Investigation and Testing--Testing of Geotechnical Structures --Part 1:
Pile Load Test by Static Axial Compression).
3.3. Description of the 2nd test
The 2nd type of pile test was performed using steel closed ended
tube. The length of the tube is 1.6 m and the diameter is 0.178 m. The
main equipment required for the 2nd type of tests is shown in Fig. 8.
For the ground radial stresses measurement were used 6 push in load
cells, which were located in horizontal plane 0.5 m from the center of
the model pile. The test was carried out in 2 stages.
At 1st stage the load cells with numbers 1, 2 and 6 were pushed in
to 0.25 m depth and respectively cells with numbers 3, 4 and 5 were
pushed into 0.50 m depth. After few hours the model pile during the 1st
stage was pushed in to the soil up to 0.8 m depth.
At 2nd stage the 1st, 2nd and 6th load cells were pushed into 1.0 m
depth and 3rd, 4th and 5th load cells were pushed into 1.40 m depth. 2
hours later the model pile was pushed in to the soil up to 1.60 m depth.
At both stages the model pile push in was performed continuously
(velocity of the cylinders of the hydraulic jacks is 6.25 mm/s), and the
increments of the horizontal stresses were measured at every 80 mm.
4. Result analysis
4.1. The 1st test results
Considering the 1st type test load--settlement curve when model
pile was at 1.1 m depth (Fig. 9) it is clearly seen that high level
plastic deformations have occurred when vertical load reached 135.29 kN.
This load value was adopted as bearing capacity or ultimate load.
Accepted ultimate settlement consists of 3.1% of pile diameter and it is
obvious that the mentioned value is almost 3 times lower than widely
accepted 10% mean.
[FIGURE 5 OMITTED]
[FIGURE 6 OMITTED]
[FIGURE 7 OMITTED]
[FIGURE 8 OMITTED]
[FIGURE 9 OMITTED]
[FIGURE 10 OMITTED]
[FIGURE 11 OMITTED]
[FIGURE 12 OMITTED]
At F1 area ultimate shear stress mobilized when settlement was 10
mm, and at F2 area the ultimate shear stress mobilization did not appear
at all (Fig. 10). The magnitude of average shear stresses acting at F2
area was three times higher than shear stresses acting at area F1.
According to Fig. 11 almost twice larger normal stresses have
concentrated at F4 area. This effect fits with well-known theoretical
statements.
When model pile was at a 1.4 m depth (Fig. 12), the ultimate
vertical load was determined 182.60 kN. Accepted ultimate settlement
also consists of 3.1% of pile diameter and was in line with test
performed at a 1.1 m depth.
At F1 area the very small magnitudes of shear stresses have
appeared during the test (Fig. 13). At F2 area the significant higher
ultimate shear stress mobilized when settlement has reached 10 mm. Shear
stresses has started to grow again at area F2 when settlement reached
22.5 mm.
From Fig. 14 it is obvious that the same effect has appeared as in
previous test.
[FIGURE 13 OMITTED]
[FIGURE 14 OMITTED]
[FIGURE 15 OMITTED]
4.1. 2nd test results
The radial stress increments patch during the installation of the
2nd model pile is presented in Figs 15-16.
The radial stresses wave is clearly seen which goes to the peak
when pile tip gets near the push in load cells measurement plane. These
results confirm the statement that the normal stresses beneath the pile
base have significant influence on radial stresses increase near the
pile tip. This effect appears due to the bearing stratum deformation and
failure mechanism.
5. Conclusions, future trends and perspectives
1. The performed static load tests of the short displacement pile
determined, that the highest shear stresses on the pile skin get
concentrated near the pile tip.
2. Trying to explain the reasons of the effect mentioned in
conclusion one, the specific test was performed, which revealed that
increment of shear stresses near the pile tip is as a result of
increased horizontal (radial) normal stresses, which increases due to
bearing stratum deformation and "conditional" failure
mechanism. This means that the stress state is one of the governing
criteria for describing the failure state of displacement pile.
3. A survey of the main concepts of bearing capacities demonstrates
that the empirical approaches are not relevant and/or sufficient,
because they are based only on cone static [q.sub.c] or dynamic
[q.sub.d] penetration test results. These field tests give insufficient
information about the initial soil stress state.
4. Analytical and semi-empirical approaches, which are based on
failure criteria, involving mechanical properties of the soil in concert
with stress state, are used for more accurate prediction of the pile
bearing capacity, but merely, if the true values of the failure criteria
are determined. Consequently, the determination of these values applying
soil field test methods is currently one of the most pressing and
difficult geotechnical problems.
[FIGURE 16 OMITTED]
5. Research also revealed that the widely accepted 10% of pile
diameter conditional settlement, which is widely adopted to determine
the ultimate load, does not fit the current investigation. The performed
tests yielded that the relative settlement of sand stratum corresponding
to the ultimate state (when high level plastic deformations occurred)
was 3.1%, even for sufficiently loose sand strata.
6. The obtained results will serve for development of short
displacement pile bearing capacity prediction methods, which will take
into account the stress state influence.
7. The pile bearing capacity methods applied in geotechnical design
should employ not only cone penetration results, but also the push in
pressure cell test on purpose to get a better ability on pile bearing
capacity prediction.
Caption: Fig. 1. Transmission of vertical load
Caption: Fig. 2. Assumed failure patterns under deep foundations:
a--after Prandtl, Reissner, Caquot, Buisman, Terzaghi; b--after DeBeer,
Jaky, Meyerhof; c--after Berezantsev and Yaroshenko, Vesic; d--after
Bishop, Hill and Mott, Skemption, Yassin and Gibson
Caption: Fig. 3. Pattern of modified failure mechanism around the
tapered pile tip in cavity expansion solution
Caption: Fig. 4. Soil particle size grading curve
Caption: Fig. 5. Results of cone penetration test performed at
laboratory pit
Caption: Fig. 6. Principle scheme of the 1st model pile
Caption: Fig. 7. Test of the 1st model pile
Caption: Fig. 8. Test of the 2nd model pile
Caption: Fig. 9. Load--settlement curve when the 1st model pile was
at a depth of 1.1 m
Caption: Fig. 10. Distribution of shear stress during static
vertical load test when the 1st model pile was at a depth of 1.1 m
Caption: Fig. 11. Distribution of normal stress during static
vertical load test when the 1st model pile was at a depth of 1.1 m
Caption: Fig. 12. Load--settlement curve when the 1st model pile
was at a depth of 1.4 m
Caption: Fig. 13. Distribution of shear stress during static
vertical load test when the 1st model pile was at a depth of 1.4 m
Caption: Fig. 14. Distribution of normal stress during static
vertical load test when the 1st model pile was at a depth of 1.4 m
Caption: Fig. 15. Results of 2nd model pile test when pile push in
was being performed up to 0.8 m depth
Caption: Fig. 16. Results of 2nd model pile test when pile push in
was being performed up to 1.6 m depth
doi:10.3846/bjrbe.2014.02
Received 11 November 2013; accepted 14 January 2014
Acknowledgment
Authors are grateful to Civil Engineering Scientific Research
Centre of Vilnius Gediminas Technical University for equipment and
infrastructure, which were employed for investigation.
References
Ai, Z.Y.; Yue, Z. Q. 2009. Elastic Analysis of Axially Loaded
Single Pile in Multilayered Soils, International Journal of Engineering
Science 47(11-12): 1079-1088.
http://dx.doi.org/10.1016/j.ijengsci.2008.07.005
Baziar, M. H.; Kashkooli, A.; Azizkandi, A. 2012. Prediction of
Pile Shaft Resistance Using Cone Penetration Tests (CPTs), Computers and
Geotechnics 45: 74-82. http://dx.doi.org/10.1016/j.compgeo.2012.04.005
Berezantzev, V. G.; Khristoforov, V.; Golubkov, V. 1961. Load
Bearing Capacity and Deformation of Pile Foundation, in Proc. of the 5th
International Conference on Soil Mechanics and Foundation Engineering,
vol. 2. Paris, 11-15.
Igoe, D.; Gavin, K.; O'Kelly, B. 2011. Shaft Capacity of
Open-Ended Piles in Sand, Journal of Geotechnical and Geoenvironmental
Engineering 137(10): 903-913.
http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000511
Krasinski, A. 2014. Numerical Simulation of Screw Displacement Pile
Interaction with Non-Cohesive Soil, Archives of Civil and Mechanical
Engineering 14(1): 122-133. http://dx.doi.org/10.1016/j.acme.2013.05.010
Lehane, M. B. 1992. Experimental Investigations of Pile Behaviour
Using Instrumented Field Piles. PhD thesis 1992. London: Civil
Engineering, University of London (Imperial College).
Manandhar, S.; Yasufuku, N. 2012. Analytical Model for the
End-Bearing Capacity of Tapered Piles Using Cavity Expansion Theory,
Advances in Civil Engineering 2012: 1-9.
http://dx.doi.org/10.1155/2012/749540
McClelland, B. 1974. Design of Deep Penetration Piles for Ocean
Structures, Journal of the Geotechnical Engineering Divisions 100(7):
705-747.
Nottingham, L.; Schmertmann, H. J. 1975. An Investigation of Pile
Design Procedures. Report No. D629, Florida Dept of Transportation,
Florida.
Said, I.; De Gennaro, V.; Frank, R. 2009. Axisymmetric Finite
Element Analysis of Pile Loading Tests, Computers and Geotechnics
36(1-2): 6-19. http://dx.doi.org/10.1016/j.compgeo.2008.02.011
Shelke, A.; Patra, N. R. 2011. Effect of Compressive Load on Uplift
Capacity of Cast-Insitu Bored Piles, Geotechnical and Geological
Engineering 29(5): 927-934. http://dx.doi.org/10.1007/s10706-011-9423-z
Terzaghi, K. P.; Ralph, B.; Mesri, G. 1996. Soil Mechanics in
Engineering Practice. 3rd edition. New York: Wiley-Interscience, 592 p.
ISBN 0471086584.
Vesic, S. A. 1967. A Study of Bearing Capacity of Deep Foundations.
Report No. B-189, Georgia Institute of Technology, Atlanta 270 p.
Zhang, Q.-Q.; Zhang, Z.-M.; Li, S.-C. 2013. Investigation into Skin
Friction of Bored Pile Including Influence of Soil Strength at Pile
Base, Marine Georesources and Geotechnology 31(1): 1-16.
http://dx.doi.org/10.1080/1064119X.2011.626506
Zhang, Z. M.; Zhang, Q. Q.; Yu, F. 2011. A Destructive Field Study
on the Behavior of Piles under Tension and Compression, Journal of
Zhejiang University SCIENCE A 12(4): 291-300.
http://dx.doi.org/10.1631/jzus.A1000253
Vaidas Martinkus (1)([mail]), Arnoldas Norkus (2), Tautvydas
Statkus (3), Daiva Zilioniene (4)
(1,2,3) Dept of Geotechnical Engineering, Vilnius Gediminas
Technical University, Sauletekio al. 11, 10223 Vilnius, Lithuania
(4) Dept of Roads, Vilnius Gediminas Technical University,
Sauletekio al. 11, 10223 Vilnius, Lithuania
E-mails: (1) vaidas.martinkus@dok.vgtu.lt; (2)
arnoldas.norkus@vgtu.lt; (3) tautvydas.statkus@vgtu.lt; (4)
daiva.zilioniene@vgtu.lt